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Abstract. The nonlinearization of the eigenvalue problems associated with the Toda hierarchy
and the coupled Korteweg—de Vries (KdV) hierarchy leads to an integrable symplecti€ amap

an integrable Hamiltonian syste(#lp), respectively. It is proved that and(Hp) have the same
integrals{H;}. The quasi-periodic solution of th@ + 1)-dimensional Kadomtsev—Petviashvili
equation is splitinto three Hamiltonian syste(#&), (H1), (H2), while that of the special + 1)-
dimensional Toda equation is separated iff), (H1) plus the discrete flow generated by the
symplectic mapS. A clear evolution picture of various flows is given through the ‘window’ of
Abel-Jacobi coordinates. The explicit theta-function solutions are obtained by resorting to this
separation technique.

1. Introduction

In [1], the explicit quasi-periodic solutions of sonie + 1)- as well as(2 + 1)-dimensional
integrable models, such as the coupled nonlinear@&lihger equation and the Kadomtsev—
Petviashvili (KP) equation, are obtained in three steps:

(a) decomposition;
(b) straightening out of the flow;
(c) inversion.

The meaning of (a) is a nonlinear separation of variables, which reduces higher-dimensional
integrable models into lower ones, and is realized by the so-called nonlinearization technique.
Step (b) makes it possible to integrate the models simply and directly. In step (c) we write
the explicit solutions in the original variables. Both (b) and (c) are completed by the algebro-
geometric approach.

The aim of the present paper is to extend the method to discrete integrable models, with
a special emphasis on the more diffic@t+ 1)-dimensional ones.

The decomposition of integrable models, or the nonlinear separation of variables, as the
basis of all of the analysis, stems from the Lax representation of soliton equations. Integrable
models, no matter whether they are continuous or discrete, 1 + 1 or 2 + 1 dimensional, are
usually compatible conditions of certain overdetermined linear equations, which are called
the Lax pair in the soliton literature. It is the nonlinearization of the Lax pair that provides
an effective way to split the integral models into lower-dimensional ones, and finally into
Hamiltonian flows or discrete symplectic flows in the phase sp@é, dp A dg} [1-4].
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8060 C Caoetal

In the 1 + 1 continuous case, every equation in a certain soliton hierarchy

du
o = Y () (1.1)
Tk
is usually expressed in the form of a zero-curvature equation:
dUu
0 = Vix — U, Vi] (1.2)
Tk

which is the compatible condition of two overdetermined systems of linear equations (Lax

pair)
d (p)_ p
o <q> _U(u,k)<q)

d /p)_ p
d_"71<(q> _Vk(u’)‘)<4)'

Itis interesting that there exists a relation between the potengiatl the ‘eigenfunctionp, ¢:

u=fo(p.q) (1.4)

which nonlinearizes (1.3) into two compatible Hamiltonian systems (after simply substituting
(1.4) into (1.3)):

:0)-C
de \g )~ \ 9Ho/0p

£()-Ct)
dn, \¢ /) \ 9H/dp )’

The systentHy) is completely integrable in the Liouville sense [5], aiigd Ho, ... are exactly
its integrals, involutive with each other (see [1]).

The procedure from (1.3) to (1.5) via (1.4) is called nonlinearization of the Lax pair and
has the following three features:

(a) the linear equation (1.3) becomes nonlinear (1.5);

(b) the overdetermined equation (1.3) becomes compatible (1.5);

(c) the soliton equation (1.1), as a compatible condition of (1.3), becomes naturally satisfied
by (1.4), so long ap, ¢ is a compatible solution of (1.5).

Thus the 1 + 1 soliton equation (1.1) is decomposed (conditionally) into two 0 + 1 integrable
models (1.5). In shor{Y;) is split into (Hp) and(Hy).

This procedure is valid for almost all 1 + 1 soliton hierarchies known so far. Here (1.4)
plays an essential role. The original motivation comes from Moser’s investigation of the
relation between the KdV hierarchy and the classical Neumann system (harmonic oscillator
constrained on a sphere), where (1.4) is derived from the sphere condition, the so-called
McKean—Trubowitz identity concerning the eigenfunctions of Hill's equation [6, 7]. Another
powerful motivation comes from the scattering expression of the reflectionless potential [8],
or the Bargmann potential in the KdV-Sdklinger case, where (1.4) is exactly the scattering
expression. In [9] these two kinds of constraints were first summarized in the convenient form

(1.3)

(1.5)

N
SAj .
G_1= yj(S_uJ (Neumann constraint (1.6)
j=1
N
SAj .
Go=) Vigo (Bargmann constraint (1.7)
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which can be regarded as symmetry constraints gihce Go, §A;/8u are all symmetries of

the given soliton equation (1.1). In the examples such as the KdV and the AKNS (Ablowitz,
Kanp, Newell and Segur) hierarchies, we use the scattering expressions of the reflectionless
potential as the starting point, which suggests the inner relation between the inverse scattering
transform method (IST) and the algebro-geometric approach (see [1, 10, 11]).

As for the 1+1 discrete case, the first equation in (1.3) is replaced by a discrete eigenvalue
problem, which is nonlinearized into a symplectic nigpnstead of the first system of (1.5).

In this case the discrete soliton mod#l;) is decomposed int¢S) and(H;).

The 2 + 1 soliton equations, both continuous and discrete, are much more complicated.
Nevertheless, they could be decomposed in a similar procedure from their Lax representation
into 1 + 1 dimensional equations [12—-14], and further into 0 + 1 dimensional equations.
Unfortunately, up to now the list of known 2 + 1 integrable models has been fairly short.

In the present paper we are going to investigate the Toda lattice (and ong 2fit-
dimensional counterparts), which is an important discrete model with a physical background
[15,23-25]. Mathematically, it is the first member in the isospectral hierarchy of the discrete
Toda eigenvalue problem:

qu =@E+E a +b)CIj =0ujq;. (18)

There are infinitely many membe{X, } in the hierarchy, which commute with each other. The
nonlinearization of (1.8) under the Bargmann constraint gives an integrable symplectic map
[2,16-18] in{R?", dp A dg} with N integralsHy, Hi, . .., Hy_1, which are independent and
in involution with each other (see section 2.4).

It is discovered that the nonlinearization of the eigenvalue problem [19]

)= ) ()
o (P )=(2"" J 1.9
(%‘) ( -1 3 —w )\ q; 1.9)

associated with the coupled KdV (cKdV) hierarchy;} leads to the same integrals
Ho, Hy, ..., Hy_1 (See section 8).

According to the nonlinearization technique, the symplectic fiapd the Hamiltonian
systemsHy, H; and H, play the role of ‘bricks’, from which two 2 + 1 integrable models,
the special2 + 1)-dimensional Toda equation and the well known Kadomtsev—Petviashvili
equation, are (conditionally) built up. Specifically, we have

Hy
Xo

S special 2 + 1 Toda (1.10)
X1

Hy

H;
Y,

Ho KP (1.11)
Y,
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(see sections 2, 4 and 7). Though quite different at first glance, these two 2 + 1 models are
linked up by the common basis as shown in the diagrams.

The Abel-Jacobi coordinatg straightens out théf, -flow as well as the discretg-flow
on the Jacobi variety (see sections 5 and 6):

de _

d‘L'k -
p(n+1)—¢n) = Qs

wheret; andn are the associated flow variables. It is very easy to integrate these equations.
Thus through the ‘window’ of the Abel-Jacobi coordinate we have a clear evolution picture

of various flows, which means that the decomposition of special quasi-periodic solutions of
nonlinear integrable models could be essentially reduced to a linear superposition:

197 k=0,1,2,...

discreteS-flow
¢ = o +nQs

stationary Toda

Bargmann flow for cKdV
. ¢ = o +xQo
stationary cKdV

Hi-flow: ¢ = ¢ + 1.

Toda flonX,: ¢ = ¢ +nQg + 7,2

special 2+ 1 Toda: ¢ = ¢o +nQs + xR + yQ1
cKdV flow Y. ¢ = ¢ + xQ0 + 7 2%

KP flow: ¢ = ¢o+xQo+yQ1 +1Q0.

The explicit solutions expressed by the theta function for these equations (mainly theorems 7.2
and 8.8 for 2 + 1 Toda and 2 + 1 KP, respectively) are obtained through the Abel-Jacobi—
Riemann inversion. Some of the results coincide with those found in [1, 15, 20] (see sections 7
and 8). Section 8 is brief since the continuous model of KP is not our main concern here.
For more detail see [1], where there is a quite similar treatment. It is interesting to point out
that both the AKNS hierarchy (in [1]) and the coupled KdV hierarchy (in the present paper),
though quite different, lead to the same KP equation.

Another application of the decomposition diagram is that it provides an effective way in
numerical analysis and graphical representation of solutions of the integrable nonlinear models
(see [2,4)).

For a deeper understanding of the Toda lattices, Kodama’s recent work is very interesting
[23-25].

2. The Toda hierarchy

Let E be the shift operatorEf(n) = f(n+ 1), E-f(n) = f(n —1) andA = E — 1,
A~ =1-— E~. Denote

(1 0 (0 1 {0 0
1=\0 -1 2=10 o0 %=\1 o)
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The Toda lattice eigenvalue problem (1.8) is put in the form
pj\_ Dj
E =U(a,b,a; 2.1
<q./') (@ aj)(%‘) @D
1/0 a?
U(a,b,k):;(_l A—b) (2.2)

by introducingp; = E~ag;.

Lemma 2.1 (Fundamental identity [2]). Leto (a, b, A) be a linear map defined as

V=o(a,b,My] = —{%A’ay(l) + (b — A)y(z)}al - (ZE’azy(z))az +2y@qs. (2.3)
Then the discrete commutative relation
(EV)U—UV:U*<Z){—(K—AJ)y} (2.4)
holds for any functiony = (y©, y@)T where
laa+ A Ab 0 A
K:(za( 3 )a 2a 2) J=< 0 a ) 2.5)
bA~a 2(a“A + A~ a®) A—a O
a da d 1/0 a’sa
U, =—| U(a+eda,b+edb,))=— . (2.6
b) \ sb de |, a2 \Sa (b—\)sa — ash

Corollary 2.2. (K — 1J)y = 0impliesdeto[y] = constantindependent of.

Proof. By (2.4),V = o[y] satisfiesV,+1 = UV, U L. Thus det/,+1 = detV,. O

The Lenard gradient,} are a universal polynomial of, b:

(" _1/0 1 (2a,
8§-2= 0 8—1—2 1 80—2 b,

(2.7)
_ 1 2(1” (bn+l + bn) etc
81= 2 a3+a3_1+brzl
satisfying the recursive formula
Kg_2=Jg_2=0 Jg_]_:O ng_]_:.]gj (28)
which means thatk — AJ)g; = 0 for the generating function
oo
& =8-1% Z gh (2.9)
k=0

By corollary 2.2, detr[g,] = constant. Since the Lenard gradients are universal polynomials
of a andb, this constant can be determined by considering in the classtofvith rapidly
decaying condition as — co. We have

deto[g,] = —3% (2.10)

after taking into account the structure of (2.3). The discrete Toda equation is defined as

d (a
d_‘L'k (b) =Xk = Jgk. (211)
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The first two members ared = x, 1, = y)

l n bn+ _bn
d <Z> — Xo(n) = <2a (b )> (2.12)

dx a? - affl
d (a, san(aZyy —aZ_+bZ — b7 y)
—y )= X1(n) = . (2.13)
dy \ bn a2(bysr + by) — a2y (by + by1)
Let
1 d
an = expE(QrHl = On) b, = aQn (2.14)
Then (2.12) is transformed into the usual Toda equation
&0,
dx2 = eXp(Qn+1 — Qn) — XP(Qy — On-1)- (215)

The compatible solution of (2.12) and (2.13) yields the solution to the spé&zial 1)-
dimensional Toda equation:

%0
dxdy

d d
= eXFXQrﬁl - Qn)a(QrHl + Qn) - eXFXQn - Qn—l)a(Qn + Qn—l)- (216)

3. The integrable symplectic map

In the continuous case, the nonlinearization of the eigenvalue problem gives an integrable
system, while in the discrete case it yields an integrable symplectic map.

Lemma 3.1.
Sai /6 Eq;
Votj = < a']/ a) = qjl Zl> (31)
SOlj/(Sb qu
g:  —p2
o(a b, ap[Ve,] = <p’Z’ Pi ) = (3.2)
q; —Pjq;j
(EEj)U — UEJ' =0 (33)
(K —osz)chj =0. (34)

Proof. Equation (3.1) is a well known fact. Equations (3.2) and (3.3) are results of direct
calculations. According to (2.4), equation (3.4) is equivalent to (3.3) since the lineat/map
is one-to-one. a

LetA = g, ..., ay be N distinct eigenvalues. Put the copies of eigenvalue problems
(2.1) in vector form

1
Ep =aq Eq = alr = ;(Aq —p—bg) (3.5)

wherep = (p1,....,p0)7. ¢ = (q1,...,qy)T, A = diaglay,...,ay). Consider the
Bargmann constraint

N
g = ZVoej (3.6)
=1
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which is equivalent to

a=1{q,Eq)=+/{q,r) ={q,q)

or

(a) _ (\/(Aq, q) = (p.q) — (q.9)°
b (g, q)
The eigenvalue problem (3.5) is nonlinearizedfyinto the map

. <5) N <aazr) N <a1<Aq —C;q— <q,q>q>> =° <2> 59

witha = \/(Aq, q) — (p.q) — (q. 9)2.

Proposition 3.2. S is a symplectic map itR?", dp A dg).

) = f5(p. q). (3.7)

Proof. Let p = aq, § = a~'r. A direct calculation gives @ A dj = dp A dg. ]

In order to prove the integrability of, we consider
N

Va; 0.(q, Eq)
G,=g. 1+ L = ( ) 3.9
S ,;A—aj {1+ 0.q.9)) 39)
Ly —(p, _
Vi = 6()[Gy] = (2 <p1 q)) . <Qx(p, q) —0.(p, p)) (3.10)
1 -3 0.(q,9) —Qu(p,q)
F, = detV,\ (311)
where (3.10) is obtained by direct calculations resorting to (3.2) with
X &n;
Q&M= (=AM =) =
j=1 J

Itis easy to prove that under the Bargmann constraint (86); 1.J)G; = 0. Hence by (2.4)
the Lax matrixV, satisfies

(EV,)U — UV, = 0. (3.12)

According to corollary 2.2F; is invariant under the symplectic mamand yields the integrals
{F;} as follows:

Fo={0:(p. p)+ (p. )} 0i(q. 9) + 1} — {Qi(p, ) + 12)°
= —%kz +0:(p, )+ (P.9)0:(q,9) — 0:(Ap, @) + 0:(p, P)Q1(q, ¢) — Q(p. q)

o0
=32+ AR (3.13)
k=0

where
Fo={p,p)+{p.q9){q.q9) — (Ap.q)
Fi = (A*p, p) +(p, q)(A*q. q) — (A¥"'p, q)

+ Y (A'p, p)Aq.q) — (A'p,q) (AT p, q)).
i+j=k—1



8066 C Caoetal

In order to prove the involutivity of F; }, we introduce the generating function method, which
is convenient in a series of later calculations. Denote the varialige-86w by 7,. Then

da Pk)_(‘aFA/aqk>_ (pk>
dr, (qk —\ 9F./opk =W o) qk

(3.14)
W, p) = P Vv, — Vo,
Proposition 3.3.
d
A
(Fu, F,) =0 VA peC (3.16)
(F;, ) =0 Vi k=0,1,2,.... (3.17)

Proof. A direct calculation gives (3.15), which implies the invariancgpf= detV,, along
ther, -flow:

dF,
0= d_l‘)L _(Flj,yF)»)'
The expansion of (3.16) according to the negative poweks pfgives (3.17). O

4. Decomposition of the Toda equation

Consider another generating functiéf) defined as the squared root of the normalizgd

4 > AF,
2 k
(1 +4H,) =—PFA=1—;W. (4.1)
It is easy to find the recursive formula for the polynomials determineff;hy
Hi=) 353
k=0
H, = —1F, m=0,12 4.2)
Hiss=—3Fus—2 Y HH;, k=012
i+j=k
i,j=20

ExertingJ ~1K on the Bargmann constraint (36}imes gives

N

Z Ot§Vaj =gtcagi 2t g1t Chup8 2 (4-3)
j=1

where there are two extra termg_; + ¢’g_, each time, since the linear space ¥es two
dimensional with the generatogs; andg_».

Proposition 4.1. fs maps the solution of the discrete flow
p(”) n Po
=5 4.4
(q(n)) (cm) 44)
into the solution(a, b))” = fs(p, ¢q) of the stationary Toda equation

XN +CN1XN_1+~'~+CNNX0=O. (45)
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Proof. The linear combination of (4.3) gives

N
0= Za(aj)vaj =gy teyign-1t - toy N+2g-2 (4.6)
j=1
where
N N
a) =[] —a)=> ayir. 4.7)
j=1 k=0
Acting with J on (4.6) yields (4.5). O
Multiplied by A~*~1 and summed with respect tdfrom 0 toco, equation (4.3) becomes
G, =c8 tc g2 (4.8)
where
o0 o0
=1+ Z Craoh k2 =1+ Z C],(+3)\._k_2. (4.9)
k=0 k=0
Hence
Vi = colgl] (4.10)
F, = cZdeto[g;] = —3A%c2 (4.11)
C) = :l.+41‘1)L (412)
where (2.10) is used. By (4.2) we have
Cy = 0 C = 4Hk+3. (413)
Lemma 4.2. Let(a, b)” = fs(p, q). Then
d (a
el =—-2JG,. 4.14
(5 : (@14

Proof. By (2.5) and (3.9), we obtain

G :(%aAQA(q,q)>
Tl agpe )

A direct calculation shows that the two components of both sides of (4.14) are equal to

1
5{[a2 — (A =b)?]0:(q. q) +2(L — b) Q;.(p. q) — Oi(p, p) +[a® — (p. q) + Ab — b*]}

2(b — 1) 0i(q,q) +40:(p,q) + 2b. O
Theorem 4.3.
(a) dfs(IVH) = Xi. (4.15)

(b) Let(p(n, ), g(n, &))" be the compatible solution of th& -flow (with the variabler;)
and the discrete flow generated by the symplectic shégith the variabler). Thenfs maps
it into the solution of thé&th Toda equation:

d (a
—_— =X =0,12,... 4.1
w(i)=x  x-o12 (4.16)

where(a, b)T is calculated by (3.7).
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Proof. Let 1, be the variable of théf, -flow. According to (4.1) and (4.12), itis easy to verify
that

d -1 d
a_ - 9 4.17
d'L')\ ZA.ZCA dl‘)L ( )
By (4.14), we have
d [a 1
a () =0
Hence we have (4.16). |
5. Straightening out of the H-flow
FactorizeF;, V;}2 and V2! as rational functions of:
—B(L)  —RM
— _V12V21 _ Vll 2 — L — 51
Vi = (V) 4oy 4a20n) (5.1)
m(A)
V2= —0,(p.p)— (p.q) = —(p.q)—— e (5.2)
)
v =1+ .q) = n) 5.3
A 0,(q.q) a(h) (5.3)

where
N+2

N
ay=[[r-ep  BOI=]]r-8)
j=1 j=1
2N+2
RO =aM)pr) =[] =)
j=1
N N
mp) =[Ja—w) ) =[]n—vp
j=1 j=1

withx; =a;, j=1,...,N;Ay+; =B85, =1,..., N+ 2. {u;} and{v;} are called elliptic
coordinates. By comparing the coefficients.of in the expansions of (5.2) and (5.3) we have

N
= (e — 1)) (5.4)
=
N
q) = Z(Olj —vj) (5.5)
=)

N N 2
(Aq, q) = %Z o — v (Z(ai — v_,-)) . (5.6)
-1

j=1
In order to have the evolut|on of the elliptic coordinates along gh#low, we use the
components of the Lax equation (3.14):

d 12 124,11 11y,12
@ Vit =AWV e 2wy
i 2W21V11 2W11 V21

) )
dt, wl w
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and (51) withh = g, vg:
yil_ ~/ R(pr) yil— ~/ R(vy)

e 200y B 20(w)
A direct calculation gives
1 % B m(A) (5.7)
2VR (o) At a()(h — pwm’ () '
1 —n(A
_ 1 du_ nd) (5.8)
2VR(vp) dt, oM (A — v)n’ ()
Resorting to the interpolation formula, we haye= 1,2, ..., N)
ﬁ: m A _ A (5.9)
— 2JR(u) dn. a(d)
N N—j 3 N—j
Yy dve _ 2777 (5.10)
a(A)

& 2J/R(p) diz

Consider the algebraic cunfegiven by the affine equatio§? — R(x) = 0, with genus
g = N and the usual holomorphic differentials

. A= dx 1
W = ——— =1 ...,8.
I=5 R0 J 8

DenoteP(A) = (A, & = /R(X)). For fixed pointPy on I, introduce the quasi-Abel-Jacobi
coordinates by

B 8 Plu) B 8 P () ~
w]=Z/ ; ¢j=Z/ wj j=l,...,g. (512)

k=1 " Po k=1 " Po

(5.11)

Then (5.9) and (5.10) are rewritten as

d&j A8~ d(gj —A8—J
kA, A 5.13
dr, a(A) dr, a(A) ( )
Hence
dr: A8 do; A8—7
a; AT 9 _ M (5.14)
dr,  2AJR(W) dr,  2A/R(V)
by (4.17), (4.12), (5.1) and (4.11).
Letay, by, ..., a,, b, be the canonical basis of the homology group of cycle§ pand
C=(Aj)gr, Aj = / @ (5.15)
For the normalized holomorphic differential
8
w=Cd w; =) Cyid; (5.16)
j=1

we have

/ wj=5jk /a)j =Bjk (517)
ag by
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where the matrixB = (Bj;) is symmetric and has a positive-definite imaginary part and is

used to construct the Riemann theta functiolr ¢21]:
0(0) =) expny/—1((Bz,2) +2(¢,2)) ¢ €C8.

Z€Z8

The Abel mapA: Div(I') — J(I') = C8/T is defined by

P
A(P) =/ w -A<Z”kpk> = anA(Pk) (5.18)
Po

where DiVTI") is the divisor group, and the latticeis spanned by the periodic vectdés, B},
which are the column vectors of the unit matrix ahdintroduce the Abel-Jacobi coordinates

8
¥ = A(Z P(uk)) =Cy
k=1

. (5.19)
¢ = A(Z P(vk)> =C¢.
k=1
Through direct calculations we have the following assertions.
Lemma5.1.LetS;, = Af +--- +25,,,. Then the coefficients in
)Lg+l 00
(5.20)

—=> aut
R =
satisfy the recursive formula
Apg=1 Ap=15

1 5.21
Ak:i<Sk+ Z SiAj). ( )

i+j=k
ij=1
Lemma5.2. LetCy, ..., C, be the column vectors 6f. Then the coefficient of the expansion
)‘g+l 1 = k—1
(CA™ 4+ +C A8 = QAT (5.22)
2JR0Y) § ,Z:;
is written as
Q= %(Akcl + A 1Co+-- -+ Ak_g+1cg) (523)

if we definedA _, =0,5s =0, 1, 2,.... Specifically,
Qo = 3C1 Q1 = 3(A1C1+C2) Qo = 3(A2C1 + A1C2 + Ca).

Theorem 5.3. The H;-flow is straightened out by the Abel-Jacobi coordinates:

dy d¢

— =-Q — = Q. 5.24

ar k = (5.24)
Proof. By (5.19), (5.14) and (5.22) we obtain

dl/’ - —k—3 d¢ = —k—3

— = QA — = QA 5.25

B =L i =% (5.25)

which imply (5.24) since for arbitrary we have

d > <. d
/ (f, Hy) = Z(f, HoL ¥ 3 = f A ks,
=0

dr, — dr;
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6. Straightening out of the discrete flow

In this sectiorp andg are designated as scalars, Notlimensional vectors. It would not cause
any confusion since np andg are contained in the final results of this section. Consider the
Toda eigenvalue problem

m+1)=Ux(m) U, 1<0 a > 6.1)
n =U,x(n = — .
X X an \ =1 r—b,

wherey (n) = (p(n), ¢(n))T. The fundamental solution matrix

@ @
o @ (P (n) p9(n) (1 0O

can be expressed explicitly as
M1 =U,U,_1...Up. (6.2)

By mathematical induction, it is easy to prove that

1(0 a(z) >
My = —
ap \—-1 A —bg

1 ( —a? a?(1 — bo) )
My = — ,
agayr \ —(A —bo) (A —b1)(A — bo) — ag

—a. n—2
p(l)(n) — %1 kn—Z _ (Z bj>kn—3 +...
ag...dy—2 =1
a._ n—2 (63)
ap...dy_2 =1
-1 n—1
q(l)(n) —— = Jan1_ (Z bj>)hn—2 +...
ag...dy—1 =
1 n—1
2 — n n—1
¢?m) = ———1a —( b-)x +}
apg...dy—1 ]2:; /

The Lax matrixV, of the symplectic majs defined by (3.10) satisfies the discrete Lax
equation (3.12), which implies that the solution space of the linear equAtior= U x is
invariant under the action df,. Let p be the eigenvalue df; in the solution space, andbe
the eigenfunction, which is called the Baker function (after some normalization):

Ex=Uy Vix = px. (6.4)

Evidently, detp — V;| = p? + F, = 0. Thus there are two eigenvalues = +p, whereby
(5.1), (4.11), (4.12):

ey RO 3 (1

Hence,

1
VE+p=2+0i(p,q)+2.H, = 1+ O<x>
(6.6)

, 1
VM —p=0:(p,q) — 21H; = (pkq) + O(ﬁ)
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An elementary discussion shows that the corresponding Baker functions can be taken as

xEm) = cExPm) + x@n)
L VO £p (6.7)
=
VA21(0)

Lemma6.1.Let(EV,)U — UV, =0. Then

Vim)M, = M, V;.(0). (6.8)

Proof.
Vi(n) = Uy_1Vi(n — HUY
=U,1...UVi(O)Uy ... UL

= M, V,(O)M; L. O

Proposition 6.2 (Formula of Dubrovin—Novikov type).

VZin) lﬂ[ A —v;(n)

+ _
(n,2)qg"(n,2) = = 6.9
q q VAZ:L(O) i1 A — Vj (0) ( )

whereg™ andg ™~ are the second components of (6.7).
Proof. Through direct calculation with the use of (6.8), we obtain (6.9). O

q*(n,») andg~(n, ) can be considered as valuesqdf:, P) on the upper and lower
sheets of", respectively. The functiorp] = [R(1)]Y?/2x()) has the values/R(1)/2a (1)
and —/R(})/2a (1) on the upper and lower sheet, respectively. With the coordinate
z =21 & = £z"*1 we have the equation & near infinity:

E2_R,(2)=0 R.(2) = 22V2R(z7H = (1= M12) .. (1 — Aawe22)-

There are two infinitieso, = (z = O,§ = (-1)%),s = 1, 2, which are located on the upper
(s = 2) and lower(s = 1) sheet, respectively. By (6.3), (6.6) and (6.9), we h@ve> oo)

)Ln
g (n, 1) = ———+0(1" 1)
ag...dy—1
gtm, M) =ag...a,_1 A"+ O()L_”_l).
Resorting to these asymptotic behaviours and (6.7), (6.9), through an elementary analysis we
have:

Proposition 6.3. The second componeptz, P) of the Baker function has:

(a) g simple poles at4(0), . .., v,(0) and a zero of thath order atocoy;
(b) g simple zeros ab1(n), ..., v,(n) and a pole of thesith order atoo;.
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Consider the meromorphic differential dn
ws(n) = {%lnq(n, P)}d)» (6.10)

with the residue—1,1 at v;(0), v;(n), respectively, and the residuen,n at coj, 0oy,
respectively. Decompose (6.10) as a linear combination

8
ws(n) = Q+nw(0oz, 001) + ¥ wlv;(n), v;( O]+ Y yjw; (6.11)

8
=1 =1

wherew; is the normalized differential of the first kind given by (5.1®)is an Abel differential
of the second kind ana (P, Q) is the normal differential of the third kind with the residue
1, —1atP, Q, respectively, and the properties (see [15])

f w(P,0)=0 (6.12)

P
/w(P, Q)=27t\/—_1/ w;j. (6.13)
b; ]

The integral of (6.10) along; givesy; = 27 +/—1n;, while the integral of (6.11) along;
yields

8 v;(n) 001 8
Z/ w:n/ w+Z(nij+mj5j) (6.14)

j=17v,0 002 j=1
wheren; andm; are certain integers. Thus we obtain

Theorem 6.4.

Ap=¢(n+1D) —p(n) =/°°le95 (modT). (6.15)

002

7. Algebro-geometric solution of the special 2 + 1 Toda equation

Lemma 7.1. Nearoo,, in the local coordinate = A»~1, we have

o0
w = (—1)”12ka]‘ dz (7.1)
k=0
> 1
P(X) = —n + (—=1)**? Qft 7.2
AP(R) = —ns +(=1) ;k”kz (7.2)
where
Po
N =f . (7.3)
Proof. We have
3 A8 da . _
0=Cd= o (CIA ™ 4+ CA 7).

2[R(1)]1/2
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Nearooy, [R(1)]Y? takes the valu¢—1)*\/R(%). By (5.22) and through direct calculations,
we obtain the required results. a

From (3.7) and (5.5) we have the formula for the poteritial
8
b=1(g.q)=A1—) v (7.4)
j=1

whereA; = ) «;. In order to calculat§_ v;, we use the Riemann theorem [21], which
asserts that there exists a constant velcteuch that (A(P (1)) — ¢ — K) has exactly zeros
atl = vy, ..., v,. Thus by a standard treatment [1, 21, 22], we have

g 2
v =1(T) = ) ResadIng(AP() — ¢ — K)
=1 s=1 "7

J

£ 9 0@+K+n)
=1 () — Q—In—= 7.5
1(I) ; 09 ”9(¢+IC+171) (7.5)

where

8
Ik(F):Z/ Mo, (7.6)
j=1v4j

Theorem 7.2. The special2 + 1)-dimensional Toda equation (2.16) has the quasi-periodic
solution

O{(n + DQs +xQo + yQ1 + D1}0{nQs + yQa + Dy}
Qn(x’ y) = In

OnQs +xQ + yQ1 + D1}0{(n + D)Qg + yQ1 + Dy}
+HA — L1 (D)}x + 0,(0, y) (7.7)
whereD; = ¢+ K + 11.

Proof. By the discussion with (2.16) and theorem 4.3, we have the decomposition diagram
(1.3). Hence from theorem 5.3 and 6.4 we obtain the explicit solution written in the Abel-
Jacobi coordinatey = nQg + xQo + yQ21 + ¢, Which is inverted by the above procedure
into

0{(n + 1)Qs +xQ0 + yQ1 + Dy}

b,(x,y) =0d,In +A; — (T
n(x y) X 9{n§25+xQo+le+D1} 1 1( )

whereQ2g = n, — n1 is used. The relatioh, = 9, Q,, implies (7.7). O

8. The coupled KdV hierarchy and the KP equation

The canonical equations of the Hamiltonian

Ho = —3Fo=—3(p. p) = 3(P.4)(q. 4) + 3{Ap, q) (8.1)
defined by (4.2) and (3.13) can be put in the form

(5; ) =0 (lq)j) 8.2)

N |
U = 2(—Olj +u)oy +vopr — o3
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u <q,q)>
= = £.(p,q). 8.3
<U> ((p,q> Jep. ) (8:3)

Equation (8.2) is exactly the eigenvalue problem which determine the cKdV soliton hierarchy
[19]. We list the basic facts without proof as follows, which have quite a similar structure to
those in the Toda case.

with

Proposition 8.1 (The fundamental identity). Let (0 = 3/0,)

V=56 Myl={3-0—u+0y@or+{ay? —vy@}or +yPos. (8.4)
Then
V. — [0, V] = Uf=(K — 1)y} (8.5)
where
. 20 92+ du . 0 9
(—82+u8 v3+8v) <3 0) 86)

The Lenard gradients are

. (1 . (0 . (v (vt
§2=19 §-1=11 so=1\4 8=\, +u2+ 20

Uy — uvy + 3ulv + 302 (8.7)
82 = 3 etc
Uy + Uity +u®+ 6uv
with
oo
det6[2,] = —34° &= &t (8.8)
k=0
The cKdV vector field is defined &g = Jg; with
Yoz(l/lx> Y]_:< Mxx+2uux+2vx >
Uy —Vyy + 2uv, + 2u,v
(8.9)

v ( Uspx — Uy, + 314)2r + 3u?u, + 6u, v+ 6uv, )
2= .

Vyry — UV, — 3u, v, + 3uv, + 6uu, v + 6o,

Proposition 8.2. Let (4, v) be the compatible solution of thg- and Y,-flow:

(Z)y:n (Z)tzyz. (8.10)

Thenw = 2v satisfies the KP equation

Wy = %(w” + 3w2)xx + %wyy. (8.11)

Proof. Equation (8.11) is based on the results of the calculations

Uiy = (vxx + 302 — 3y, + 3u2v)“_

3, — (3 3,2 _ 2
Uy = (4v” +3v uv, + 3u v)”. O
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Proposition 8.3.

A i/ iqi
Va,:( o/ ”>=(”f§f> (8.12)
Saj/8v q;
- _p2
6@wa»ﬂw=<”? p’)za (8.13)
q; —Pjd;j
ejx—[U()). 6,1 =0 (8.14)
(K —a;J)Va; =0. (8.15)

The constraint (8.3) could be put in Bargmann form

N
2o=) Va;. (8.16)
j=1
Just as in (3.9) we construct
> @Olj _ < 0:(p.q) )
j=1)‘_aj 1+0:(.9) .

Proposition 8.4. The symplectic mapand the Bargmann systefilo) = (8.2) + (8.16) have
the same Lax matri¥, = V, and the same conserved integrgls} or {H;}.

ék =g+

(8.17)

Proof. A direct calculation shows that

N N
5 A A 1 1 2 €j
Vi =61(Gy) = 3(—u+ Moy —voy + o3+ 3 ;qjol+; s
which coincides with (3.10) as = (g, q). O

Proposition 8.5. f, defined by (8.3) maps the solution of the Bargmann sy&etn+ (8.16)
into the solution of the stationary cKdV equation

Yy +cy1Y¥y_1+---+CyyYo=0. (818)

Lemma 8.6. Let (u, v)™ = f.(p,q) andt, 1, be the variables of the,- and H,-flow,
respectively. Then

d /u .

@) & <v> =df.(IVF,) =-2JG;. (8.19)

(b) 11(”)=dﬂUVHu=x4fg. (8.20)
drg, \v

(© df.(IVH,) = Y;. (8.21)

Theorem 8.7. (a) Let(p, ¢)T be the compatible solution of thg-flow (x) and theH,-flow
(to). Then(u, v)T = f.(p, q) satisfies thé&th cKdV equation

d (u
—_— =Y.
dz; <v> ¢

(b) Let(p(x,y,1),q(x,y,1)" be the compatible solution of th-, H;- and H,-flow (with
variablesx, y and ¢, respectively). Themw(x, y,t) = 2v = 2(p, q) solves the KP
equation (8.11).
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Proof. (@) is a corollary of lemma 8.6, while (b) is obtained by taking into account
proposition 8.2. O

Theorem 8.8. The KP equation (8.11) has the solution
w(x, y, 1) = 202IN0(xQo + yQ + 125 + D1) + wp (8.22)
whereD; = ¢o + K + 51, wo = Y_a% — Io(T) +c.

Proof. Theorem 8.7 yields the decomposition diagram (1.4) of the KP equation, whose special
solution is expressed very simply by the Abel-Jacobi coordirgate:¢g + x Q2 + yQ1 +1Q5.
What we need to do is to invert it into the usual coordinate.

By making use of (8.2), we have

uy +u”+2v = (Aq. q)

fromu = (g, ¢). On the other hand, they can be expressed through the elliptic coordinates by
(5.5) and (5.6):

g
U= Z(aj —vj)
j=1

. (8.23)
Uy +u’+2v = % Z(ajz- - v?) + %uz.
j=1
Since{v;} are the zeros of (A(P (1)) — ¢ — K) by Riemann’s theorem (see section 7), an
ordinary treatment gives [1, 21, 22]
8

j 61
> v = L) +Qd;In—=
— 62
J=
8
-

. 2} .
> w2 = Ir) + Q]9 In 0—; — Q502 In 16,

~

with

Oy = 0(xQ0 + yQ1 +1Q5 + Dy) Dy = o+ K + 14
wherel, (T") is given by (7.6)9; = 9/9¢;, etc, and the Einstein summation convention is used.
Hence

8 01
Zuj — I(T)+d,In 5

J

=

- (8.24)
: 2 61 2
Vi = ILT) +9, In— — s In 016-.
- 6o .
j=1
By making use of the equation fa%-flow (8.9) + (8.10)
01

=uy = (u, + u?+ 2v)
92 :

2
—ay, In
we have

01
—9,In = =u, +u®+2v+ec.
) 92

Put this into (8.24), then substitute (8.24) into (8.23). Finally, we have
20 =202IN61+ ) a? — L) +c.
This completes the proof. O
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