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Abstract. The nonlinearization of the eigenvalue problems associated with the Toda hierarchy
and the coupled Korteweg–de Vries (KdV) hierarchy leads to an integrable symplectic mapS and
an integrable Hamiltonian system(H0), respectively. It is proved thatS and(H0) have the same
integrals{Hk}. The quasi-periodic solution of the(2 + 1)-dimensional Kadomtsev–Petviashvili
equation is split into three Hamiltonian systems(H0), (H1), (H2),while that of the special(2 + 1)-
dimensional Toda equation is separated into(H0), (H1) plus the discrete flow generated by the
symplectic mapS. A clear evolution picture of various flows is given through the ‘window’ of
Abel–Jacobi coordinates. The explicit theta-function solutions are obtained by resorting to this
separation technique.

1. Introduction

In [1], the explicit quasi-periodic solutions of some(1 + 1)- as well as(2 + 1)-dimensional
integrable models, such as the coupled nonlinear Schrödinger equation and the Kadomtsev–
Petviashvili (KP) equation, are obtained in three steps:

(a) decomposition;
(b) straightening out of the flow;
(c) inversion.

The meaning of (a) is a nonlinear separation of variables, which reduces higher-dimensional
integrable models into lower ones, and is realized by the so-called nonlinearization technique.
Step (b) makes it possible to integrate the models simply and directly. In step (c) we write
the explicit solutions in the original variables. Both (b) and (c) are completed by the algebro-
geometric approach.

The aim of the present paper is to extend the method to discrete integrable models, with
a special emphasis on the more difficult(2 + 1)-dimensional ones.

The decomposition of integrable models, or the nonlinear separation of variables, as the
basis of all of the analysis, stems from the Lax representation of soliton equations. Integrable
models, no matter whether they are continuous or discrete, 1 + 1 or 2 + 1 dimensional, are
usually compatible conditions of certain overdetermined linear equations, which are called
the Lax pair in the soliton literature. It is the nonlinearization of the Lax pair that provides
an effective way to split the integral models into lower-dimensional ones, and finally into
Hamiltonian flows or discrete symplectic flows in the phase space{R2N, dp ∧ dq} [1–4].
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In the 1 + 1 continuous case, every equation in a certain soliton hierarchy

du

dτk
= Yk(u) (1.1)

is usually expressed in the form of a zero-curvature equation:

dU

dτk
= Vk,x − [U,Vk] (1.2)

which is the compatible condition of two overdetermined systems of linear equations (Lax
pair)

d

dx

(
p

q

)
= U(u, λ)

(
p

q

)
d

dτk

(
p

q

)
= Vk(u, λ)

(
p

q

)
.

(1.3)

It is interesting that there exists a relation between the potentialu and the ‘eigenfunction’p, q:

u = fc(p, q) (1.4)

which nonlinearizes (1.3) into two compatible Hamiltonian systems (after simply substituting
(1.4) into (1.3)):

d

dx

(
p

q

)
=
(−∂H0/∂q

∂H0/∂p

)
d

dτk

(
p

q

)
=
(−∂Hk/∂q
∂Hk/∂p

)
.

(1.5)

The system(H0) is completely integrable in the Liouville sense [5], andH1, H2, . . . are exactly
its integrals, involutive with each other (see [1]).

The procedure from (1.3) to (1.5) via (1.4) is called nonlinearization of the Lax pair and
has the following three features:

(a) the linear equation (1.3) becomes nonlinear (1.5);
(b) the overdetermined equation (1.3) becomes compatible (1.5);
(c) the soliton equation (1.1), as a compatible condition of (1.3), becomes naturally satisfied

by (1.4), so long asp, q is a compatible solution of (1.5).

Thus the 1 + 1 soliton equation (1.1) is decomposed (conditionally) into two 0 + 1 integrable
models (1.5). In short,(Yk) is split into(H0) and(Hk).

This procedure is valid for almost all 1 + 1 soliton hierarchies known so far. Here (1.4)
plays an essential role. The original motivation comes from Moser’s investigation of the
relation between the KdV hierarchy and the classical Neumann system (harmonic oscillator
constrained on a sphere), where (1.4) is derived from the sphere condition, the so-called
McKean–Trubowitz identity concerning the eigenfunctions of Hill’s equation [6, 7]. Another
powerful motivation comes from the scattering expression of the reflectionless potential [8],
or the Bargmann potential in the KdV–Schrödinger case, where (1.4) is exactly the scattering
expression. In [9] these two kinds of constraints were first summarized in the convenient form

G−1 =
N∑
j=1

γj
δλj

δu
(Neumann constraint) (1.6)

G0 =
N∑
j=1

γj
δλj

δu
(Bargmann constraint) (1.7)



Special 2+ 1 Toda lattice to Kadomtsev–Petviashvili equation 8061

which can be regarded as symmetry constraints sinceG−1,G0, δλj/δu are all symmetries of
the given soliton equation (1.1). In the examples such as the KdV and the AKNS (Ablowitz,
Kanp, Newell and Segur) hierarchies, we use the scattering expressions of the reflectionless
potential as the starting point, which suggests the inner relation between the inverse scattering
transform method (IST) and the algebro-geometric approach (see [1, 10, 11]).

As for the 1+1 discrete case, the first equation in (1.3) is replaced by a discrete eigenvalue
problem, which is nonlinearized into a symplectic mapS, instead of the first system of (1.5).
In this case the discrete soliton model(Xk) is decomposed into(S) and(Hk).

The 2 + 1 soliton equations, both continuous and discrete, are much more complicated.
Nevertheless, they could be decomposed in a similar procedure from their Lax representation
into 1 + 1 dimensional equations [12–14], and further into 0 + 1 dimensional equations.
Unfortunately, up to now the list of known 2 + 1 integrable models has been fairly short.

In the present paper we are going to investigate the Toda lattice (and one of its(2 + 1)-
dimensional counterparts), which is an important discrete model with a physical background
[15, 23–25]. Mathematically, it is the first member in the isospectral hierarchy of the discrete
Toda eigenvalue problem:

Lqj ≡ (aE +E−a + b)qj = αjqj . (1.8)

There are infinitely many members{Xk} in the hierarchy, which commute with each other. The
nonlinearization of (1.8) under the Bargmann constraint gives an integrable symplectic mapS

[2, 16–18] in{R2N, dp∧dq} withN integralsH0, H1, . . . , HN−1, which are independent and
in involution with each other (see section 2.4).

It is discovered that the nonlinearization of the eigenvalue problem [19]

∂x

(
pj
qj

)
=
( 1

2(−αj + u) v

−1 1
2(αj − u)

)(
pj
qj

)
(1.9)

associated with the coupled KdV (cKdV) hierarchy{Yk} leads to the same integrals
H0, H1, . . . , HN−1 (see section 8).

According to the nonlinearization technique, the symplectic mapS and the Hamiltonian
systemsH0, H1 andH2 play the role of ‘bricks’, from which two 2 + 1 integrable models,
the special(2 + 1)-dimensional Toda equation and the well known Kadomtsev–Petviashvili
equation, are (conditionally) built up. Specifically, we have

H0 aaaaa

S !!
!!
!

aaaaa

H1
!!
!!
!

X0 aaaaa

X1
!!

!!
! special 2 + 1 Toda (1.10)

H1 aaaaa

H0 !
!!
!!

aaaaa

H2
!!
!!
!

Y1 aaaaa

Y2
!!

!!
! KP (1.11)
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(see sections 2, 4 and 7). Though quite different at first glance, these two 2 + 1 models are
linked up by the common basis as shown in the diagrams.

The Abel–Jacobi coordinateφ straightens out theHk-flow as well as the discreteS-flow
on the Jacobi variety (see sections 5 and 6):

dφ

dτk
= �k k = 0, 1, 2, . . .

φ(n + 1)− φ(n) = �S
whereτk andn are the associated flow variables. It is very easy to integrate these equations.
Thus through the ‘window’ of the Abel–Jacobi coordinate we have a clear evolution picture
of various flows, which means that the decomposition of special quasi-periodic solutions of
nonlinear integrable models could be essentially reduced to a linear superposition:

discreteS-flow

stationary Toda

}
φ = φ0 + n�S

Bargmann flow for cKdV

stationary cKdV

}
φ = φ0 + x�0

Hk-flow: φ = φ0 + τk�k

Toda flowXk: φ = φ0 + n�S + τk�k

special 2 + 1 Toda: φ = φ0 + n�S + x�0 + y�1

cKdV flow Yk: φ = φ0 + x�0 + τk�k

KP flow: φ = φ0 + x�0 + y�1 + t�2.

The explicit solutions expressed by the theta function for these equations (mainly theorems 7.2
and 8.8 for 2 + 1 Toda and 2 + 1 KP, respectively) are obtained through the Abel–Jacobi–
Riemann inversion. Some of the results coincide with those found in [1, 15, 20] (see sections 7
and 8). Section 8 is brief since the continuous model of KP is not our main concern here.
For more detail see [1], where there is a quite similar treatment. It is interesting to point out
that both the AKNS hierarchy (in [1]) and the coupled KdV hierarchy (in the present paper),
though quite different, lead to the same KP equation.

Another application of the decomposition diagram is that it provides an effective way in
numerical analysis and graphical representation of solutions of the integrable nonlinear models
(see [2, 4]).

For a deeper understanding of the Toda lattices, Kodama’s recent work is very interesting
[23–25].

2. The Toda hierarchy

Let E be the shift operator:Ef (n) = f (n + 1), E−f (n) = f (n − 1) and1 = E − 1,
1− = 1− E−. Denote

σ1 =
(

1 0
0 −1

)
σ2 =

(
0 1
0 0

)
σ3 =

(
0 0
1 0

)
.
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The Toda lattice eigenvalue problem (1.8) is put in the form

E

(
pj
qj

)
= U(a, b, αj )

(
pj
qj

)
(2.1)

U(a, b, λ) = 1

a

(
0 a2

−1 λ− b
)

(2.2)

by introducingpj = E−aqj .
Lemma 2.1 (Fundamental identity [2]). Letσ(a, b, λ) be a linear map defined as

V = σ(a, b, λ)[γ ] = −{ 1
21
−aγ (1) + (b − λ)γ (2)}σ1−

(
2E−a2γ (2)

)
σ2 + 2γ (2)σ3. (2.3)

Then the discrete commutative relation

(EV )U − UV = U∗
(
a

b

)
{−(K − λJ )γ } (2.4)

holds for any functionγ = (γ (1), γ (2))T , where

K =
( 1

2a(1 +1−)a a1b

b1−a 2(a21 +1−a2)

)
J =

(
0 a1

1−a 0

)
(2.5)

U∗

(
a

b

)(
δa

δb

)
= d

dε

∣∣∣∣
ε=0

U(a + εδa, b + εδb, λ) = 1

a2

(
0 a2δa

δa (b − λ)δa − aδb
)
. (2.6)

Corollary 2.2. (K − λJ )γ = 0 impliesdetσ [γ ] = constant, independent ofn.

Proof. By (2.4),V = σ [γ ] satisfiesVn+1 = UVnU−1. Thus detVn+1 = detVn. �

The Lenard gradients{gk} are a universal polynomial ofa, b:

g−2 =
(
a−1
n

0

)
g−1 = 1

2

(
0

1

)
g0 = 1

2

(
2an
bn

)
g1 = 1

2

(
2an(bn+1 + bn)

a2
n + a2

n−1 + b2
n

)
etc

(2.7)

satisfying the recursive formula

Kg−2 = Jg−2 = 0 Jg−1 = 0 Kgj−1 = Jgj (2.8)

which means that(K − λJ )gλ = 0 for the generating function

gλ = g−1 +
∞∑
k=0

gkλ
−k−1. (2.9)

By corollary 2.2, detσ [gλ] = constant. Since the Lenard gradients are universal polynomials
of a andb, this constant can be determined by considering in the class ofa, b with rapidly
decaying condition asn→∞. We have

detσ [gλ] = − 1
4λ

2 (2.10)

after taking into account the structure of (2.3). The discrete Toda equation is defined as

d

dτk

(
a

b

)
= Xk = Jgk. (2.11)
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The first two members are (τ0 = x, τ1 = y)

d

dx

(
an
bn

)
= X0(n) =

( 1
2an

(
bn+1− bn

)
a2
n − a2

n−1

)
(2.12)

d

dy

(
an
bn

)
= X1(n) =

( 1
2an

(
a2
n+1− a2

n−1 + b2
n − b2

n−1

)
a2
n

(
bn+1 + bn

)− a2
n−1

(
bn + bn−1

) ). (2.13)

Let

an = exp 1
2(Qn+1−Qn) bn = d

dx
Qn. (2.14)

Then (2.12) is transformed into the usual Toda equation

d2Qn

dx2
= exp(Qn+1−Qn)− exp(Qn −Qn−1). (2.15)

The compatible solution of (2.12) and (2.13) yields the solution to the special(2 + 1)-
dimensional Toda equation:

∂2Qn

∂x∂y
= exp(Qn+1−Qn)

∂

∂x
(Qn+1 +Qn)− exp(Qn −Qn−1)

∂

∂x
(Qn +Qn−1). (2.16)

3. The integrable symplectic map

In the continuous case, the nonlinearization of the eigenvalue problem gives an integrable
system, while in the discrete case it yields an integrable symplectic map.

Lemma 3.1.

∇αj =
(
δαj/δa

δαj/δb

)
=
(
qjEqj

1
2q

2
j

)
(3.1)

σ(a, b, αj )[∇αj ] =
(
pjqj −p2

j

q2
j −pjqj

)
≡ εj (3.2)

(Eεj )U − Uεj = 0 (3.3)

(K − αjJ )∇αj = 0. (3.4)

Proof. Equation (3.1) is a well known fact. Equations (3.2) and (3.3) are results of direct
calculations. According to (2.4), equation (3.4) is equivalent to (3.3) since the linear mapU∗
is one-to-one. �

Let λ = α1, . . . , αN beN distinct eigenvalues. Put theN copies of eigenvalue problems
(2.1) in vector form

Ep = aq Eq = a−1r ≡ 1

a
(Aq − p − bq) (3.5)

wherep = (p1, . . . , pN)
T , q = (q1, . . . , qN)

T , A = diag(α1, . . . , αN). Consider the
Bargmann constraint

g0 =
N∑
j=1

∇αj (3.6)
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which is equivalent to

a = 〈q,Eq〉 =
√
〈q, r〉 b = 〈q, q〉

or (
a

b

)
=
(√〈Aq, q〉 − 〈p, q〉 − 〈q, q〉2

〈q, q〉
)
≡ fS(p, q). (3.7)

The eigenvalue problem (3.5) is nonlinearized byfS into the map

E

(
p

q

)
=
(
aq

a−1r

)
=
(

aq

a−1(Aq − p − 〈q, q〉q)
)
≡ S

(
p

q

)
(3.8)

with a =
√
〈Aq, q〉 − 〈p, q〉 − 〈q, q〉2.

Proposition 3.2. S is a symplectic map in(R2N, dp ∧ dq).

Proof. Let p̃ = aq, q̃ = a−1r. A direct calculation gives d̃p ∧ dq̃ = dp ∧ dq. �

In order to prove the integrability ofS, we consider

Gλ = g−1 +
N∑
j=1

∇αj
λ− αj =

(
Qλ(q,Eq)

1
2{1 +Qλ(q, q)}

)
(3.9)

Vλ = σ(λ)[Gλ] =
( 1

2λ −〈p, q〉
1 − 1

2λ

)
+

(
Qλ(p, q) −Qλ(p, p)

Qλ(q, q) −Qλ(p, q)

)
(3.10)

Fλ = detVλ (3.11)

where (3.10) is obtained by direct calculations resorting to (3.2) with

Qλ(ξ, η) = 〈(λ− A)−1ξ, η〉 =
N∑
j=1

ξjηj

λ− αj .

It is easy to prove that under the Bargmann constraint (3.6),(K−λJ )Gλ = 0. Hence by (2.4)
the Lax matrixVλ satisfies

(EVλ)U − UVλ = 0. (3.12)

According to corollary 2.2,Fλ is invariant under the symplectic mapS and yields the integrals
{Fj } as follows:

Fλ =
{
Qλ(p, p) + 〈p, q〉}{Qλ(q, q) + 1

}− {Qλ(p, q) + 1
2λ
}2

= − 1
4λ

2 +Qλ(p, p) + 〈p, q〉Qλ(q, q)−Qλ(Ap, q) +Qλ(p, p)Qλ(q, q)−Q2
λ(p, q)

= − 1
4λ

2 +
∞∑
k=0

λ−k−1Fk (3.13)

where

F0 = 〈p, p〉 + 〈p, q〉〈q, q〉 − 〈Ap, q〉
Fk = 〈Akp, p〉 + 〈p, q〉〈Akq, q〉 − 〈Ak+1p, q〉

+
∑

i+j=k−1

{〈Aip, p〉〈Ajq.q〉 − 〈Aip, q〉〈Ajp, q〉}.
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In order to prove the involutivity of{Fk}, we introduce the generating function method, which
is convenient in a series of later calculations. Denote the variable ofFλ-flow by tλ. Then

d

dtλ

(
pk
qk

)
=
(−∂Fλ/∂qk
∂Fλ/∂pk

)
= W(λ, αk)

(
pk
qk

)
W(λ,µ) = 2

λ− µVλ − V
21
λ σ1.

(3.14)

Proposition 3.3.

d

dtλ
Vµ = [W(λ,µ), Vµ] ∀λ µ ∈ C (3.15)

(Fµ, Fλ) = 0 ∀λ µ ∈ C (3.16)

(Fj , Fk) = 0 ∀j k = 0, 1, 2, . . . . (3.17)

Proof. A direct calculation gives (3.15), which implies the invariance ofFµ = detVµ along
thetλ-flow:

0= dFµ
dtλ
= (Fµ, Fλ).

The expansion of (3.16) according to the negative powers ofλ,µ gives (3.17). �

4. Decomposition of the Toda equation

Consider another generating functionHλ defined as the squared root of the normalizedFλ:

(1 + 4Hλ)
2 = − 4

λ2
Fλ = 1−

∞∑
k=0

4Fk
λk+3

. (4.1)

It is easy to find the recursive formula for the polynomials determined byHλ:

Hλ =
∞∑
k=0

Hk

λk+3

Hm = − 1
2Fm m = 0, 1, 2

Hk+3 = − 1
2Fk+3− 2

∑
i+j=k
i,j>0

HiHj k = 0, 1, 2, . . . .

(4.2)

ExertingJ−1K on the Bargmann constraint (3.6)k times gives
N∑
j=1

αkj∇αj = gk + c2gk−2 + · · · + ck+1g−1 + c′k+2g−2 (4.3)

where there are two extra termscg−1 + c′g−2 each time, since the linear space kerJ is two
dimensional with the generatorsg−1 andg−2.

Proposition 4.1. fS maps the solution of the discrete flow(
p(n)

q(n)

)
= Sn

(
p0

q0

)
(4.4)

into the solution(a, b)T = fS(p, q) of the stationary Toda equation

XN + cN1XN−1 + · · · + cNNX0 = 0. (4.5)
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Proof. The linear combination of (4.3) gives

0=
N∑
j=1

α(αj )∇αj = gN + cN1gN−1 + · · · + cN,N+2g−2 (4.6)

where

α(λ) =
N∏
j=1

(λ− αj ) =
N∑
k=0

aN−kλk. (4.7)

Acting with J on (4.6) yields (4.5). �
Multiplied by λ−k−1 and summed with respect tok from 0 to∞, equation (4.3) becomes

Gλ = cλgλ + c′λg−2 (4.8)

where

cλ = 1 +
∞∑
k=0

ck+2λ
−k−2 c′λ = 1 +

∞∑
k=0

c′k+3λ
−k−2. (4.9)

Hence

Vλ = cλσ [gλ] (4.10)

Fλ = c2
λ detσ [gλ] = − 1

4λ
2c2
λ (4.11)

cλ = 1 + 4Hλ (4.12)

where (2.10) is used. By (4.2) we have

c2 = 0 ck = 4Hk+3. (4.13)

Lemma 4.2. Let (a, b)T = fS(p, q). Then

d

dtλ

(
a

b

)
= −2JGλ. (4.14)

Proof. By (2.5) and (3.9), we obtain

JGλ =
( 1

2a1Qλ(q, q)

1Qλ(p, q)

)
.

A direct calculation shows that the two components of both sides of (4.14) are equal to

1

a
{[a2 − (λ− b)2]Qλ(q, q) + 2(λ− b)Qλ(p, q)−Qλ(p, p) + [a2 − 〈p, q〉 + λb − b2]}

2(b − λ)Qλ(q, q) + 4Qλ(p, q) + 2b. �
Theorem 4.3.

(a) dfS(I∇Hk) = Xk. (4.15)

(b) Let(p(n, τk), q(n, τk))T be the compatible solution of theHk-flow (with the variableτk)
and the discrete flow generated by the symplectic mapS (with the variablen). ThenfS maps
it into the solution of thekth Toda equation:

d

dτk

(
a

b

)
= Xk k = 0, 1, 2, . . . (4.16)

where(a, b)T is calculated by (3.7).
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Proof. Let τλ be the variable of theHλ-flow. According to (4.1) and (4.12), it is easy to verify
that

d

dτλ
= −1

2λ2cλ

d

dtλ
. (4.17)

By (4.14), we have

d

dτλ

(
a

b

)
= 1

λ2
Jgλ.

Hence we have (4.16). �

5. Straightening out of theHk-flow

FactorizeFλ, V 12
λ andV 21

λ as rational functions ofλ:

Fλ = −V 12
λ V

21
λ − (V 11

λ )
2 = −β(λ)

4α(λ)
= −R(λ)

4α2(λ)
(5.1)

V 12
λ = −Qλ(p, p)− 〈p, q〉 = −〈p, q〉m(λ)

α(λ)
(5.2)

V 21
λ = 1 +Qλ(q, q) = n(λ)

α(λ)
(5.3)

where

α(λ) =
N∏
j=1

(λ− αj ) β(λ) =
N+2∏
j=1

(λ− βj )

R(λ) = α(λ)β(λ) =
2N+2∏
j=1

(λ− λj )

m(λ) =
N∏
j=1

(λ− µj) n(λ) =
N∏
j=1

(λ− νj )

with λj = αj , j = 1, . . . , N; λN+j = βj , j = 1, . . . , N + 2. {µj } and{νj } are called elliptic
coordinates. By comparing the coefficients ofλ−k in the expansions of (5.2) and (5.3) we have

〈p, p〉
〈p, q〉 =

N∑
j=1

(αj − µj) (5.4)

〈q, q〉 =
N∑
j=1

(αj − νj ) (5.5)

〈Aq, q〉 = 1
2

N∑
j=1

(
α2
j − ν2

j

)
+ 1

2

( N∑
j=1

(αj − νj )
)2

. (5.6)

In order to have the evolution of the elliptic coordinates along thetλ-flow, we use the
components of the Lax equation (3.14):

d

dtλ
V 12
µ = −2W 12

λµV
11
µ + 2W 11

λµV
12
µ

d

dtλ
V 21
µ = 2W 21

λµV
11
µ − 2W 11

λµV
21
µ
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and (5.1) withλ = µk, νk:

V 11
µk
=
√
R(µk)

2α(µk)
V 11
νk
=
√
R(νk)

2α(νk)
.

A direct calculation gives

1

2
√
R(µk)

dµk
dtλ
= m(λ)

α(λ)(λ− µk)m′(µk) (5.7)

1

2
√
R(νk)

dνk
dtλ
= −n(λ)
α(λ)(λ− νk)n′(νk) . (5.8)

Resorting to the interpolation formula, we have(j = 1, 2, . . . , N)
N∑
k=1

µ
N−j
k

2
√
R(µk)

dµk
dtλ
= λN−j

α(λ)
(5.9)

N∑
k=1

ν
N−j
k

2
√
R(νk)

dνk
dtλ
= −λ

N−j

α(λ)
. (5.10)

Consider the algebraic curve0 given by the affine equation,ξ2 − R(λ) = 0, with genus
g = N and the usual holomorphic differentials

ω̃j = λg−j dλ

2
√
R(λ)

j = 1, . . . , g. (5.11)

DenoteP(λ) = (λ, ξ = √R(λ)). For fixed pointP0 on0, introduce the quasi-Abel–Jacobi
coordinates by

ψ̃j =
g∑
k=1

∫ P(µk)

P0

ω̃j φ̃j =
g∑
k=1

∫ P(νk)

P0

ω̃j j = 1, . . . , g. (5.12)

Then (5.9) and (5.10) are rewritten as

dψ̃j
dtλ
= λg−j

α(λ)

dφ̃j
dtλ
= −λ

g−j

α(λ)
. (5.13)

Hence

dψ̃j
dτλ
= −λg−j

2λ
√
R(λ)

dφ̃j
dτλ
= λg−j

2λ
√
R(λ)

(5.14)

by (4.17), (4.12), (5.1) and (4.11).
Let a1, b1, . . . , ag, bg be the canonical basis of the homology group of cycles on0, and

C = (Ajk)−1
g×g Ajk =

∫
ak

ω̃j . (5.15)

For the normalized holomorphic differential

ω = Cω̃ ωs =
g∑
j=1

Csj ω̃j (5.16)

we have ∫
ak

ωj = δjk
∫
bk

ωj = Bjk (5.17)
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where the matrixB = (Bjk) is symmetric and has a positive-definite imaginary part and is
used to construct the Riemann theta function of0 [21]:

θ(ζ ) =
∑
z∈Zg

expπ
√−1(〈Bz, z〉 + 2〈ζ, z〉) ζ ∈ Cg.

The Abel mapA: Div(0)→ J (0) = Cg/T is defined by

A(P ) =
∫ P

P0

ω A
(∑

nkPk

)
=
∑

nkA(Pk) (5.18)

where Div(0) is the divisor group, and the latticeJ is spanned by the periodic vectors{δj , Bj },
which are the column vectors of the unit matrix andB. Introduce the Abel–Jacobi coordinates

ψ = A
( g∑
k=1

P(µk)

)
= Cψ̃

φ = A
( g∑
k=1

P(νk)

)
= Cφ̃.

(5.19)

Through direct calculations we have the following assertions.

Lemma 5.1. LetSk = λk1 + · · · + λk2g+2. Then the coefficients in

λg+1

√
R(λ)

=
∞∑
k=0

3kλ
−k (5.20)

satisfy the recursive formula

30 = 1 31 = 1
2S1

3k = 1

2k

(
Sk +

∑
i+j=k
i,j>1

Si3j

)
.

(5.21)

Lemma 5.2. LetC1, . . . , Cg be the column vectors ofC. Then the coefficient of the expansion

λg+1

2
√
R(λ)

(C1λ
−1 + · · · +Cgλ−g) =

∞∑
k=0

�kλ
−k−1 (5.22)

is written as

�k = 1
2(3kC1 +3k−1C2 + · · · +3k−g+1Cg) (5.23)

if we defined3−s = 0, s = 0, 1, 2, . . . . Specifically,

�0 = 1
2C1 �1 = 1

2(31C1 +C2) �2 = 1
2(32C1 +31C2 +C3).

Theorem 5.3.TheHk-flow is straightened out by the Abel–Jacobi coordinates:

dψ

dτk
= −�k dφ

dτk
= �k. (5.24)

Proof. By (5.19), (5.14) and (5.22) we obtain

dψ

dτλ
= −

∞∑
k=0

�kλ
−k−3 dφ

dτλ
=
∞∑
k=0

�kλ
−k−3 (5.25)

which imply (5.24) since for arbitraryf we have

df

dτλ
= (f,Hλ) =

∞∑
k=0

(f,Hk)λ
−k−3 =

∞∑
k=0

df

dτk
λ−k−3. �
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6. Straightening out of the discrete flow

In this sectionp andq are designated as scalars, notN -dimensional vectors. It would not cause
any confusion since nop andq are contained in the final results of this section. Consider the
Toda eigenvalue problem

χ(n + 1) = Unχ(n) Un = 1

an

(
0 a2

n

−1 λ− bn

)
(6.1)

whereχ(n) = (p(n), q(n))T . The fundamental solution matrix

Mn = (χ(1)(n), χ(2)(n)) =
(
p(1)(n) p(2)(n)

q(1)(n) q(2)(n)

)
M0 =

(
1 0
0 1

)
can be expressed explicitly as

Mn+1 = UnUn−1 . . . U0. (6.2)

By mathematical induction, it is easy to prove that

M1 = 1

a0

(
0 a2

0

−1 λ− b0

)
M2 = 1

a0a1

( −a2
1 a2

1(λ− b0)

−(λ− b0) (λ− b1)(λ− b0)− a2
0

)
p(1)(n) = −an−1

a0 . . . an−2

{
λn−2 −

(n−2∑
j=1

bj

)
λn−3 + · · ·

}

p(2)(n) = an−1

a0 . . . an−2

{
λn−1−

(n−2∑
j=1

bj

)
λn−2 + · · ·

}

q(1)(n) = −1

a0 . . . an−1

{
λn−1−

(n−1∑
j=1

bj

)
λn−2 + · · ·

}

q(2)(n) = 1

a0 . . . an−1

{
λn −

(n−1∑
j=1

bj

)
λn−1 + · · ·

}
.

(6.3)

The Lax matrixVλ of the symplectic mapS defined by (3.10) satisfies the discrete Lax
equation (3.12), which implies that the solution space of the linear equationEχ = Uχ is
invariant under the action ofVλ. Letρ be the eigenvalue ofVλ in the solution space, andχ be
the eigenfunction, which is called the Baker function (after some normalization):

Eχ = Uχ Vλχ = ρχ. (6.4)

Evidently, det|ρ − Vλ| = ρ2 + Fλ = 0. Thus there are two eigenvaluesρ± = ±ρ, whereby
(5.1), (4.11), (4.12):

ρ = λ

2
(1 + 4Hλ) =

√
R(λ)

2α(λ)
= λ

2
+ O

(
1

λ2

)
. (6.5)

Hence,

V 11
λ + ρ = λ +Qλ(p, q) + 2λHλ = λ + O

(
1

λ

)
V 11
λ − ρ = Qλ(p, q)− 2λHλ = 〈p, q〉

λ
+ O

(
1

λ2

)
.

(6.6)
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An elementary discussion shows that the corresponding Baker functions can be taken as

χ±(n) = c±χ(1)(n) + χ(2)(n)

c± = V 11
λ (0)± ρ
V 21
λ (0)

.
(6.7)

Lemma 6.1. Let (EVλ)U − UVλ = 0. Then

Vλ(n)Mn = MnVλ(0). (6.8)

Proof.

Vλ(n) = Un−1Vλ(n− 1)U−1
n−1

= Un−1 . . . U0Vλ(0)U
−1
0 . . . U−1

n−1

= MnVλ(0)M
−1
n . �

Proposition 6.2 (Formula of Dubrovin–Novikov type).

q+(n, λ)q−(n, λ) = V 21
λ (n)

V 21
λ (0)

=
N∏
j=1

λ− νj (n)
λ− νj (0) (6.9)

whereq+ andq− are the second components of (6.7).

Proof. Through direct calculation with the use of (6.8), we obtain (6.9). �

q+(n, λ) andq−(n, λ) can be considered as values ofq(n, P ) on the upper and lower
sheets of0, respectively. The function [ρ] = [R(λ)]1/2/2α(λ) has the values

√
R(λ)/2α(λ)

and −√R(λ)/2α(λ) on the upper and lower sheet, respectively. With the coordinate
z = λ−1, ξ̂ = ξzN+1, we have the equation of0 near infinity:

ξ̂2 − R∗(z) = 0 R∗(z) = z2N+2R(z−1) = (1− λ1z) . . . (1− λ2N+2z).

There are two infinities∞s = (z = 0, ξ̂ = (−1)s), s = 1, 2, which are located on the upper
(s = 2) and lower(s = 1) sheet, respectively. By (6.3), (6.6) and (6.9), we have(λ→∞)

q−(n, λ) = λn

a0 . . . an−1
+ O

(
λn−1

)
q+(n, λ) = a0 . . . an−1λ

−n + O
(
λ−n−1

)
.

Resorting to these asymptotic behaviours and (6.7), (6.9), through an elementary analysis we
have:

Proposition 6.3. The second componentq(n, P ) of the Baker function has:

(a) g simple poles atν1(0), . . . , νg(0) and a zero of thenth order at∞2;
(b) g simple zeros atν1(n), . . . , νg(n) and a pole of thenth order at∞1.
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Consider the meromorphic differential on0

ωS(n) =
{

d

dλ
ln q(n, P )

}
dλ (6.10)

with the residue−1, 1 at νj (0), νj (n), respectively, and the residue−n, n at ∞1,∞2,
respectively. Decompose (6.10) as a linear combination

ωS(n) = � + nω(∞2,∞1) +
g∑
j=1

ω[νj (n), νj (0)] +
g∑
j=1

γjωj (6.11)

whereωj is the normalized differential of the first kind given by (5.16),� is an Abel differential
of the second kind andω(P,Q) is the normal differential of the third kind with the residue
1,−1 atP,Q, respectively, and the properties (see [15])∫

aj

ω(P,Q) = 0 (6.12)

∫
bj

ω(P,Q) = 2π
√−1

∫ P

Q

ωj . (6.13)

The integral of (6.10) alongai givesγi = 2π
√−1ni, while the integral of (6.11) alongbi

yields

g∑
j=1

∫ νj (n)

νj (0)
ω = n

∫ ∞1

∞2

ω +
g∑
j=1

(
njBj +mjδj

)
(6.14)

wherenj andmj are certain integers. Thus we obtain

Theorem 6.4.

1φ = φ(n + 1)− φ(n) =
∫ ∞1

∞2

ω ≡ �S (modT ). (6.15)

7. Algebro-geometric solution of the special 2 + 1 Toda equation

Lemma 7.1. Near∞s , in the local coordinatez = λ−1, we have

ω = (−1)s+1
∞∑
k=0

�kz
k dz (7.1)

A(P (λ)) = −ηs + (−1)s+1
∞∑
k=0

1

k + 1
�kz

k+1 (7.2)

where

ηs =
∫ P0

∞s

ω. (7.3)

Proof. We have

ω = Cω̃ = λg dλ

2[R(λ)]1/2
(C1λ

−1 + · · · +Cgλ−g).
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Near∞s , [R(λ)]1/2 takes the value(−1)s
√
R(λ). By (5.22) and through direct calculations,

we obtain the required results. �

From (3.7) and (5.5) we have the formula for the potentialb:

b = 〈q, q〉 = A1−
g∑
j=1

νj (7.4)

whereA1 =
∑
αj . In order to calculate

∑
νj , we use the Riemann theorem [21], which

asserts that there exists a constant vectorK such thatθ(A(P (λ))−φ−K) has exactlyg zeros
atλ = ν1, . . . , νg. Thus by a standard treatment [1, 21, 22], we have

g∑
j=1

νj = I1(0)−
2∑
s=1

Res
λ=∞s

λ d lnθ(A(P (λ))− φ − K)

= I1(0)−
g∑
j=1

�
j

0

∂

∂ζj
ln
θ(φ +K + η2)

θ(φ +K + η1)
(7.5)

where

Ik(0) =
g∑
j=1

∫
aj

λkωj . (7.6)

Theorem 7.2.The special(2 + 1)-dimensional Toda equation (2.16) has the quasi-periodic
solution

Qn(x, y) = ln
θ{(n + 1)�S + x�0 + y�1 +D1}θ{n�S + y�1 +D1}
θ{n�S + x�0 + y�1 +D1}θ{(n + 1)�S + y�1 +D1}
+{A1− I1(0)}x +Qn(0, y) (7.7)

whereD1 = φ0 +K + η1.

Proof. By the discussion with (2.16) and theorem 4.3, we have the decomposition diagram
(1.3). Hence from theorem 5.3 and 6.4 we obtain the explicit solution written in the Abel–
Jacobi coordinate:φ = n�S + x�0 + y�1 + φ0, which is inverted by the above procedure
into

bn(x, y) = ∂x ln
θ{(n + 1)�S + x�0 + y�1 +D1}
θ{n�S + x�0 + y�1 +D1} +A1− I1(0)

where�S = η2 − η1 is used. The relationbn = ∂xQn implies (7.7). �

8. The coupled KdV hierarchy and the KP equation

The canonical equations of the Hamiltonian

H0 = − 1
2F0 = − 1

2〈p, p〉 − 1
2〈p, q〉〈q, q〉 + 1

2〈Ap, q〉 (8.1)

defined by (4.2) and (3.13) can be put in the form(
pj
qj

)
x

= Û
(
pj
qj

)
Û = 1

2(−αj + u)σ1 + vσ2 − σ3

(8.2)
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with (
u

v

)
=
( 〈q, q〉
〈p, q〉

)
= fc(p, q). (8.3)

Equation (8.2) is exactly the eigenvalue problem which determine the cKdV soliton hierarchy
[19]. We list the basic facts without proof as follows, which have quite a similar structure to
those in the Toda case.

Proposition 8.1 (The fundamental identity). Let (∂ = ∂/∂x)
V̂ = σ̂ (u, v, λ)[γ ] = { 1

2(−∂ − u + λ)γ (2)
}
σ1 +

{
∂γ (1) − vγ (2)}σ2 + γ (2)σ3. (8.4)

Then

V̂x −
[
Û , V̂

] = Û∗{−(K̂ − λĴ )γ } (8.5)

where

K̂ =
(

2∂ ∂2 + ∂u

−∂2 + u∂ v∂ + ∂v

)
Ĵ =

(
0 ∂

∂ 0

)
. (8.6)

The Lenard gradients are

ĝ−2 =
(

1
0

)
ĝ−1 =

(
0
1

)
ĝ0 =

(
v

u

)
ĝ1 =

( −vx + 2uv

ux + u2 + 2v

)
g2 =

(
vxx − 3uvx + 3u2v + 3v2

uxx + 3uux + u3 + 6uv

)
etc

(8.7)

with

detσ̂ [ĝλ] = − 1
4λ

2 ĝλ =
∞∑
k=0

ĝk−1λ
−k. (8.8)

The cKdV vector field is defined asYj = Jgj with

Y0 =
(
ux
vx

)
Y1 =

(
uxx + 2uux + 2vx
−vxx + 2uvx + 2uxv

)
Y2 =

(
uxxx − 3uuxx + 3u2

x + 3u2ux + 6uxv + 6uvx
vxxx − 3uvxx − 3uxvx + 3u2vx + 6uuxv + 6vvx

)
.

(8.9)

Proposition 8.2. Let (u, v) be the compatible solution of theY1- andY2-flow:(
u

v

)
y

= Y1

(
u

v

)
t

= Y2. (8.10)

Thenw = 2v satisfies the KP equation

wtx = 1
4

(
wxx + 3w2

)
xx

+ 3
4wyy. (8.11)

Proof. Equation (8.11) is based on the results of the calculations

vtx =
(
vxx + 3v2 − 3uvx + 3u2v

)
xx

3
4vyy =

(
3
4vxx + 3

2v
2 − uvx + 3u2v

)
xx

. �
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Proposition 8.3.

∇̂αj =
(
δαj/δu

δαj/δv

)
=
(
pjqj

q2
j

)
(8.12)

σ̂ (u, v, αj )∇̂αj =
(
pjqj −p2

j

q2
j −pjqj

)
≡ εj (8.13)

εj,x − [Û (αj ), εj ] = 0 (8.14)

(K̂ − αj Ĵ )∇̂αj = 0. (8.15)

The constraint (8.3) could be put in Bargmann form

ĝ0 =
N∑
j=1

∇̂αj . (8.16)

Just as in (3.9) we construct

Ĝλ = ĝ−1 +
N∑
j=1

∇̂αj
λ− αj =

(
Qλ(p, q)

1 +Qλ(q, q)

)
. (8.17)

Proposition 8.4. The symplectic mapS and the Bargmann system(H0) = (8.2) + (8.16) have
the same Lax matrixVλ = V̂λ and the same conserved integrals{Fj } or {Hj }.

Proof. A direct calculation shows that

V̂λ = σ̂λ(Ĝλ) = 1
2(−u + λ)σ1− vσ2 + σ3 + 1

2

N∑
j=1

q2
j σ1 +

N∑
j=1

εj

λ− αj
which coincides with (3.10) asu = 〈q, q〉. �

Proposition 8.5. fc defined by (8.3) maps the solution of the Bargmann system(8.2) + (8.16)
into the solution of the stationary cKdV equation

YN + ĉN1YN−1 + · · · + ĉNNY0 = 0. (8.18)

Lemma 8.6. Let (u, v)T = fc(p, q) and tλ, τλ be the variables of theFλ- and Hλ-flow,
respectively. Then

(a)
d

dtλ

(
u

v

)
= dfc(I∇Fλ) = −2Ĵ Ĝλ. (8.19)

(b)
d

dτλ

(
u

v

)
= dfc(I∇Hλ) = λ−2Ĵ ĝλ. (8.20)

(c) dfc(I∇Hλ) = Yk. (8.21)

Theorem 8.7. (a) Let(p, q)T be the compatible solution of theH0-flow (x) and theHk-flow
(τk). Then(u, v)T = fc(p, q) satisfies thekth cKdV equation

d

dτk

(
u

v

)
= Yk.

(b) Let(p(x, y, t), q(x, y, t))T be the compatible solution of theH0-,H1- andH2-flow (with
variablesx, y and t , respectively). Thenw(x, y, t) = 2v = 2〈p, q〉 solves the KP
equation (8.11).
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Proof. (a) is a corollary of lemma 8.6, while (b) is obtained by taking into account
proposition 8.2. �

Theorem 8.8.The KP equation (8.11) has the solution

w(x, y, t) = 2∂2
x ln θ(x�0 + y�1 + t�2 +D1) +w0 (8.22)

whereD1 = φ0 +K + η1, w0 =
∑
α2
j − I2(0) + c.

Proof. Theorem 8.7 yields the decomposition diagram (1.4) of the KP equation, whose special
solution is expressed very simply by the Abel–Jacobi coordinate:φ = φ0 + x�0 + y�1 + t�2.
What we need to do is to invert it into the usual coordinate.

By making use of (8.2), we have

ux + u2 + 2v = 〈Aq, q〉
from u = 〈q, q〉. On the other hand, they can be expressed through the elliptic coordinates by
(5.5) and (5.6):

u =
g∑
j=1

(αj − νj )

ux + u2 + 2v = 1
2

g∑
j=1

(
α2
j − ν2

j

)
+ 1

2u
2.

(8.23)

Since{νj } are the zeros ofθ(A(P (λ)) − φ − K) by Riemann’s theorem (see section 7), an
ordinary treatment gives [1, 21, 22]

g∑
j=1

νj = I1(0) +�j0∂j ln
θ1

θ2

g∑
j=1

ν2
j = I2(0) +�j1∂j ln

θ1

θ2
−�j0�k0∂2

jk ln θ1θ2

with

θs = θ(x�0 + y�1 + t�2 +Ds) Ds = φ0 +K + ηs
whereIk(0) is given by (7.6),∂j = ∂/∂ζj , etc, and the Einstein summation convention is used.
Hence

g∑
j=1

νj = I1(0) + ∂x ln
θ1

θ2

g∑
j=1

ν2
j = I2(0) + ∂y ln

θ1

θ2
− ∂2

x ln θ1θ2.

(8.24)

By making use of the equation forY1-flow (8.9) + (8.10)

−∂2
xy ln

θ1

θ2
= uy = (ux + u2 + 2v)x

we have

−∂y ln
θ1

θ2
= ux + u2 + 2v + c.

Put this into (8.24), then substitute (8.24) into (8.23). Finally, we have

2v = 2∂2
x ln θ1 +

∑
α2
j − I2(0) + c.

This completes the proof. �
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