From the special $2+1$ Toda lattice to the Kadomtsev-Petviashvili equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 328059
(http://iopscience.iop.org/0305-4470/32/46/306)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.111
The article was downloaded on 02/06/2010 at 07:50

Please note that terms and conditions apply.

From the special $2+1$ Toda lattice to the Kadomtsev-Petviashvili equation

Cewen $\mathrm{Cao} \dagger$, Xianguo Geng \dagger and Yongtang $\mathrm{Wu} \ddagger$
\dagger Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
\ddagger Department of Computer Science, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong, People's Republic of China

Received 25 May 1999

Abstract

The nonlinearization of the eigenvalue problems associated with the Toda hierarchy and the coupled Korteweg-de Vries (KdV) hierarchy leads to an integrable symplectic map S and an integrable Hamiltonian system $\left(H_{0}\right)$, respectively. It is proved that S and $\left(H_{0}\right)$ have the same integrals $\left\{H_{k}\right\}$. The quasi-periodic solution of the $(2+1)$-dimensional Kadomtsev-Petviashvili equation is split into three Hamiltonian systems $\left(H_{0}\right),\left(H_{1}\right),\left(H_{2}\right)$, while that of the special $(2+1)$ dimensional Toda equation is separated into $\left(H_{0}\right),\left(H_{1}\right)$ plus the discrete flow generated by the symplectic map S. A clear evolution picture of various flows is given through the 'window' of Abel-Jacobi coordinates. The explicit theta-function solutions are obtained by resorting to this separation technique.

1. Introduction

In [1], the explicit quasi-periodic solutions of some $(1+1)$ - as well as $(2+1)$-dimensional integrable models, such as the coupled nonlinear Schrödinger equation and the KadomtsevPetviashvili (KP) equation, are obtained in three steps:
(a) decomposition;
(b) straightening out of the flow;
(c) inversion.

The meaning of (a) is a nonlinear separation of variables, which reduces higher-dimensional integrable models into lower ones, and is realized by the so-called nonlinearization technique. Step (b) makes it possible to integrate the models simply and directly. In step (c) we write the explicit solutions in the original variables. Both (b) and (c) are completed by the algebrogeometric approach.

The aim of the present paper is to extend the method to discrete integrable models, with a special emphasis on the more difficult $(2+1)$-dimensional ones.

The decomposition of integrable models, or the nonlinear separation of variables, as the basis of all of the analysis, stems from the Lax representation of soliton equations. Integrable models, no matter whether they are continuous or discrete, $1+1$ or $2+1$ dimensional, are usually compatible conditions of certain overdetermined linear equations, which are called the Lax pair in the soliton literature. It is the nonlinearization of the Lax pair that provides an effective way to split the integral models into lower-dimensional ones, and finally into Hamiltonian flows or discrete symplectic flows in the phase space $\left\{\mathbb{R}^{2 N}, \mathrm{~d} p \wedge \mathrm{~d} q\right\}[1-4]$.

In the $1+1$ continuous case, every equation in a certain soliton hierarchy

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} \tau_{k}}=Y_{k}(u) \tag{1.1}
\end{equation*}
$$

is usually expressed in the form of a zero-curvature equation:

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} \tau_{k}}=V_{k, x}-\left[U, V_{k}\right] \tag{1.2}
\end{equation*}
$$

which is the compatible condition of two overdetermined systems of linear equations (Lax pair)

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{p}{q} & =U(u, \lambda)\binom{p}{q} \tag{1.3}\\
\frac{\mathrm{~d}}{\mathrm{~d} \tau_{k}}\binom{p}{q} & =V_{k}(u, \lambda)\binom{p}{q} .
\end{align*}
$$

It is interesting that there exists a relation between the potential u and the 'eigenfunction' p, q :

$$
\begin{equation*}
u=f_{c}(p, q) \tag{1.4}
\end{equation*}
$$

which nonlinearizes (1.3) into two compatible Hamiltonian systems (after simply substituting (1.4) into (1.3)):

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} x}\binom{p}{q} & =\binom{-\partial H_{0} / \partial q}{\partial H_{0} / \partial p} \\
\frac{\mathrm{~d}}{\mathrm{~d} \tau_{k}}\binom{p}{q} & =\binom{-\partial H_{k} / \partial q}{\partial H_{k} / \partial p} . \tag{1.5}
\end{align*}
$$

The system $\left(H_{0}\right)$ is completely integrable in the Liouville sense [5], and H_{1}, H_{2}, \ldots are exactly its integrals, involutive with each other (see [1]).

The procedure from (1.3) to (1.5) via (1.4) is called nonlinearization of the Lax pair and has the following three features:
(a) the linear equation (1.3) becomes nonlinear (1.5);
(b) the overdetermined equation (1.3) becomes compatible (1.5);
(c) the soliton equation (1.1), as a compatible condition of (1.3), becomes naturally satisfied by (1.4), so long as p, q is a compatible solution of (1.5).
Thus the $1+1$ soliton equation (1.1) is decomposed (conditionally) into two $0+1$ integrable models (1.5). In short, $\left(Y_{k}\right)$ is split into $\left(H_{0}\right)$ and $\left(H_{k}\right)$.

This procedure is valid for almost all $1+1$ soliton hierarchies known so far. Here (1.4) plays an essential role. The original motivation comes from Moser's investigation of the relation between the KdV hierarchy and the classical Neumann system (harmonic oscillator constrained on a sphere), where (1.4) is derived from the sphere condition, the so-called McKean-Trubowitz identity concerning the eigenfunctions of Hill's equation [6, 7]. Another powerful motivation comes from the scattering expression of the reflectionless potential [8], or the Bargmann potential in the KdV-Schrödinger case, where (1.4) is exactly the scattering expression. In [9] these two kinds of constraints were first summarized in the convenient form

$$
\begin{align*}
G_{-1} & =\sum_{j=1}^{N} \gamma_{j} \frac{\delta \lambda_{j}}{\delta u} \tag{1.6}\\
G_{0} & =\sum_{j=1}^{N} \gamma_{j} \frac{\delta \lambda_{j}}{\delta u} \tag{1.7}
\end{align*} \quad \text { (Bargmann constraint) }
$$

which can be regarded as symmetry constraints since $G_{-1}, G_{0}, \delta \lambda_{j} / \delta u$ are all symmetries of the given soliton equation (1.1). In the examples such as the KdV and the AKNS (Ablowitz, Kanp, Newell and Segur) hierarchies, we use the scattering expressions of the reflectionless potential as the starting point, which suggests the inner relation between the inverse scattering transform method (IST) and the algebro-geometric approach (see [1, 10, 11]).

As for the $1+1$ discrete case, the first equation in (1.3) is replaced by a discrete eigenvalue problem, which is nonlinearized into a symplectic map S, instead of the first system of (1.5). In this case the discrete soliton model $\left(X_{k}\right)$ is decomposed into (S) and $\left(H_{k}\right)$.

The $2+1$ soliton equations, both continuous and discrete, are much more complicated. Nevertheless, they could be decomposed in a similar procedure from their Lax representation into $1+1$ dimensional equations [12-14], and further into $0+1$ dimensional equations. Unfortunately, up to now the list of known $2+1$ integrable models has been fairly short.

In the present paper we are going to investigate the Toda lattice (and one of its $(2+1)$ dimensional counterparts), which is an important discrete model with a physical background [15, 23-25]. Mathematically, it is the first member in the isospectral hierarchy of the discrete Toda eigenvalue problem:

$$
\begin{equation*}
L q_{j} \equiv\left(a E+E^{-} a+b\right) q_{j}=\alpha_{j} q_{j} \tag{1.8}
\end{equation*}
$$

There are infinitely many members $\left\{X_{k}\right\}$ in the hierarchy, which commute with each other. The nonlinearization of (1.8) under the Bargmann constraint gives an integrable symplectic map S [2,16-18] in $\left\{\mathbb{R}^{2 N}, \mathrm{~d} p \wedge \mathrm{~d} q\right\}$ with N integrals $H_{0}, H_{1}, \ldots, H_{N-1}$, which are independent and in involution with each other (see section 2.4).

It is discovered that the nonlinearization of the eigenvalue problem [19]

$$
\partial_{x}\binom{p_{j}}{q_{j}}=\left(\begin{array}{cc}
\frac{1}{2}\left(-\alpha_{j}+u\right) & v \tag{1.9}\\
-1 & \frac{1}{2}\left(\alpha_{j}-u\right)
\end{array}\right)\binom{p_{j}}{q_{j}}
$$

associated with the coupled $\mathrm{KdV}(\mathrm{cKdV})$ hierarchy $\left\{Y_{k}\right\}$ leads to the same integrals $H_{0}, H_{1}, \ldots, H_{N-1}$ (see section 8).

According to the nonlinearization technique, the symplectic map S and the Hamiltonian systems H_{0}, H_{1} and H_{2} play the role of 'bricks', from which two $2+1$ integrable models, the special $(2+1)$-dimensional Toda equation and the well known Kadomtsev-Petviashvili equation, are (conditionally) built up. Specifically, we have

(see sections 2, 4 and 7). Though quite different at first glance, these two $2+1$ models are linked up by the common basis as shown in the diagrams.

The Abel-Jacobi coordinate ϕ straightens out the H_{k}-flow as well as the discrete S-flow on the Jacobi variety (see sections 5 and 6):

$$
\begin{aligned}
& \frac{\mathrm{d} \phi}{\mathrm{~d} \tau_{k}}=\Omega_{k} \quad k=0,1,2, \ldots \\
& \phi(n+1)-\phi(n)=\Omega_{S}
\end{aligned}
$$

where τ_{k} and n are the associated flow variables. It is very easy to integrate these equations. Thus through the 'window' of the Abel-Jacobi coordinate we have a clear evolution picture of various flows, which means that the decomposition of special quasi-periodic solutions of nonlinear integrable models could be essentially reduced to a linear superposition:

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { discrete } S \text {-flow } \\
\text { stationary Toda }
\end{array}\right\} \quad \phi=\phi_{0}+n \Omega_{S} \\
& \left.\begin{array}{l}
\text { Bargmann flow for cKdV } \\
\text { stationary cKdV }
\end{array}\right\} \quad \phi=\phi_{0}+x \Omega_{0} \\
& H_{k} \text {-flow: } \quad \phi=\phi_{0}+\tau_{k} \Omega_{k} \\
& \text { Toda flow } X_{k}: \quad \phi=\phi_{0}+n \Omega_{S}+\tau_{k} \Omega_{k} \\
& \text { special } 2+1 \text { Toda: } \quad \phi=\phi_{0}+n \Omega_{S}+x \Omega_{0}+y \Omega_{1} \\
& \text { cKdV flow } Y_{k}: \quad \phi=\phi_{0}+x \Omega_{0}+\tau_{k} \Omega_{k}
\end{aligned}
$$

$$
\text { KP flow: } \quad \phi=\phi_{0}+x \Omega_{0}+y \Omega_{1}+t \Omega_{2}
$$

The explicit solutions expressed by the theta function for these equations (mainly theorems 7.2 and 8.8 for $2+1$ Toda and $2+1 \mathrm{KP}$, respectively) are obtained through the Abel-JacobiRiemann inversion. Some of the results coincide with those found in [1, 15, 20] (see sections 7 and 8). Section 8 is brief since the continuous model of KP is not our main concern here. For more detail see [1], where there is a quite similar treatment. It is interesting to point out that both the AKNS hierarchy (in [1]) and the coupled KdV hierarchy (in the present paper), though quite different, lead to the same KP equation.

Another application of the decomposition diagram is that it provides an effective way in numerical analysis and graphical representation of solutions of the integrable nonlinear models (see $[2,4]$).

For a deeper understanding of the Toda lattices, Kodama's recent work is very interesting [23-25].

2. The Toda hierarchy

Let E be the shift operator: $E f(n)=f(n+1), E^{-} f(n)=f(n-1)$ and $\Delta=E-1$, $\Delta^{-}=1-E^{-}$. Denote

$$
\sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \sigma_{2}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) \quad \sigma_{3}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The Toda lattice eigenvalue problem (1.8) is put in the form

$$
\begin{align*}
& E\binom{p_{j}}{q_{j}}=U\left(a, b, \alpha_{j}\right)\binom{p_{j}}{q_{j}} \tag{2.1}\\
& U(a, b, \lambda)=\frac{1}{a}\left(\begin{array}{cc}
0 & a^{2} \\
-1 & \lambda-b
\end{array}\right) \tag{2.2}
\end{align*}
$$

by introducing $p_{j}=E^{-} a q_{j}$.
Lemma 2.1 (Fundamental identity [2]). Let $\sigma(a, b, \lambda)$ be a linear map defined as
$V=\sigma(a, b, \lambda)[\gamma]=-\left\{\frac{1}{2} \Delta^{-} a \gamma^{(1)}+(b-\lambda) \gamma^{(2)}\right\} \sigma_{1}-\left(2 E^{-} a^{2} \gamma^{(2)}\right) \sigma_{2}+2 \gamma^{(2)} \sigma_{3}$.
Then the discrete commutative relation

$$
\begin{equation*}
(E V) U-U V=U_{*}\binom{a}{b}\{-(K-\lambda J) \gamma\} \tag{2.4}
\end{equation*}
$$

holds for any function $\gamma=\left(\gamma^{(1)}, \gamma^{(2)}\right)^{T}$, where
$K=\left(\begin{array}{cc}\frac{1}{2} a\left(\Delta+\Delta^{-}\right) a & a \Delta b \\ b \Delta^{-} a & 2\left(a^{2} \Delta+\Delta^{-} a^{2}\right)\end{array}\right) \quad J=\left(\begin{array}{cc}0 & a \Delta \\ \Delta^{-} a & 0\end{array}\right)$
$U_{*}\binom{a}{b}\binom{\delta a}{\delta b}=\left.\frac{\mathrm{d}}{\mathrm{d} \varepsilon}\right|_{\varepsilon=0} U(a+\varepsilon \delta a, b+\varepsilon \delta b, \lambda)=\frac{1}{a^{2}}\left(\begin{array}{cc}0 & a^{2} \delta a \\ \delta a & (b-\lambda) \delta a-a \delta b\end{array}\right)$.
Corollary 2.2. $(K-\lambda J) \gamma=0$ implies $\operatorname{det} \sigma[\gamma]=$ constant, independent of n.
Proof. By (2.4), $V=\sigma[\gamma]$ satisfies $V_{n+1}=U V_{n} U^{-1}$. Thus det $V_{n+1}=\operatorname{det} V_{n}$.
The Lenard gradients $\left\{g_{k}\right\}$ are a universal polynomial of a, b :

$$
\begin{aligned}
& g_{-2}=\binom{a_{n}^{-1}}{0} \quad g_{-1}=\frac{1}{2}\binom{0}{1} \quad g_{0}=\frac{1}{2}\binom{2 a_{n}}{b_{n}} \\
& g_{1}=\frac{1}{2}\binom{2 a_{n}\left(b_{n+1}+b_{n}\right)}{a_{n}^{2}+a_{n-1}^{2}+b_{n}^{2}} \quad \text { etc }
\end{aligned}
$$

satisfying the recursive formula

$$
\begin{equation*}
K g_{-2}=J g_{-2}=0 \quad J g_{-1}=0 \quad K g_{j-1}=J g_{j} \tag{2.8}
\end{equation*}
$$

which means that $(K-\lambda J) g_{\lambda}=0$ for the generating function

$$
\begin{equation*}
g_{\lambda}=g_{-1}+\sum_{k=0}^{\infty} g_{k} \lambda^{-k-1} \tag{2.9}
\end{equation*}
$$

By corollary 2.2, det $\sigma\left[g_{\lambda}\right]=$ constant. Since the Lenard gradients are universal polynomials of a and b, this constant can be determined by considering in the class of a, b with rapidly decaying condition as $n \rightarrow \infty$. We have

$$
\begin{equation*}
\operatorname{det} \sigma\left[g_{\lambda}\right]=-\frac{1}{4} \lambda^{2} \tag{2.10}
\end{equation*}
$$

after taking into account the structure of (2.3). The discrete Toda equation is defined as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau_{k}}\binom{a}{b}=X_{k}=J g_{k} \tag{2.11}
\end{equation*}
$$

The first two members are ($\tau_{0}=x, \tau_{1}=y$)

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} x}\binom{a_{n}}{b_{n}}=X_{0}(n)=\binom{\frac{1}{2} a_{n}\left(b_{n+1}-b_{n}\right)}{a_{n}^{2}-a_{n-1}^{2}} \tag{2.12}\\
& \frac{\mathrm{~d}}{\mathrm{~d} y}\binom{a_{n}}{b_{n}}=X_{1}(n)=\binom{\frac{1}{2} a_{n}\left(a_{n+1}^{2}-a_{n-1}^{2}+b_{n}^{2}-b_{n-1}^{2}\right)}{a_{n}^{2}\left(b_{n+1}+b_{n}\right)-a_{n-1}^{2}\left(b_{n}+b_{n-1}\right)} . \tag{2.13}
\end{align*}
$$

Let

$$
\begin{equation*}
a_{n}=\exp \frac{1}{2}\left(Q_{n+1}-Q_{n}\right) \quad b_{n}=\frac{\mathrm{d}}{\mathrm{~d} x} Q_{n} \tag{2.14}
\end{equation*}
$$

Then (2.12) is transformed into the usual Toda equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} Q_{n}}{\mathrm{~d} x^{2}}=\exp \left(Q_{n+1}-Q_{n}\right)-\exp \left(Q_{n}-Q_{n-1}\right) \tag{2.15}
\end{equation*}
$$

The compatible solution of (2.12) and (2.13) yields the solution to the special $(2+1)$ dimensional Toda equation:

$$
\begin{equation*}
\frac{\partial^{2} Q_{n}}{\partial x \partial y}=\exp \left(Q_{n+1}-Q_{n}\right) \frac{\partial}{\partial x}\left(Q_{n+1}+Q_{n}\right)-\exp \left(Q_{n}-Q_{n-1}\right) \frac{\partial}{\partial x}\left(Q_{n}+Q_{n-1}\right) \tag{2.16}
\end{equation*}
$$

3. The integrable symplectic map

In the continuous case, the nonlinearization of the eigenvalue problem gives an integrable system, while in the discrete case it yields an integrable symplectic map.

Lemma 3.1.

$$
\begin{align*}
& \nabla \alpha_{j}=\binom{\delta \alpha_{j} / \delta a}{\delta \alpha_{j} / \delta b}=\binom{q_{j} E q_{j}}{\frac{1}{2} q_{j}^{2}} \tag{3.1}\\
& \sigma\left(a, b, \alpha_{j}\right)\left[\nabla \alpha_{j}\right]=\left(\begin{array}{cc}
p_{j} q_{j} & -p_{j}^{2} \\
q_{j}^{2} & -p_{j} q_{j}
\end{array}\right) \equiv \varepsilon_{j} \tag{3.2}\\
& \left(E \varepsilon_{j}\right) U-U \varepsilon_{j}=0 \tag{3.3}\\
& \left(K-\alpha_{j} J\right) \nabla \alpha_{j}=0 . \tag{3.4}
\end{align*}
$$

Proof. Equation (3.1) is a well known fact. Equations (3.2) and (3.3) are results of direct calculations. According to (2.4), equation (3.4) is equivalent to (3.3) since the linear map U_{*} is one-to-one.

Let $\lambda=\alpha_{1}, \ldots, \alpha_{N}$ be N distinct eigenvalues. Put the N copies of eigenvalue problems (2.1) in vector form

$$
\begin{equation*}
E p=a q \quad E q=a^{-1} r \equiv \frac{1}{a}(A q-p-b q) \tag{3.5}
\end{equation*}
$$

where $p=\left(p_{1}, \ldots, p_{N}\right)^{T}, q=\left(q_{1}, \ldots, q_{N}\right)^{T}, A=\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{N}\right)$. Consider the Bargmann constraint

$$
\begin{equation*}
g_{0}=\sum_{j=1}^{N} \nabla \alpha_{j} \tag{3.6}
\end{equation*}
$$

which is equivalent to

$$
a=\langle q, E q\rangle=\sqrt{\langle q, r\rangle} \quad b=\langle q, q\rangle
$$

or

$$
\begin{equation*}
\binom{a}{b}=\binom{\sqrt{\langle A q, q\rangle-\langle p, q\rangle-\langle q, q\rangle^{2}}}{\langle q, q\rangle} \equiv f_{S}(p, q) \tag{3.7}
\end{equation*}
$$

The eigenvalue problem (3.5) is nonlinearized by f_{S} into the map

$$
\begin{equation*}
E\binom{p}{q}=\binom{a q}{a^{-1} r}=\binom{a q}{a^{-1}(A q-p-\langle q, q\rangle q)} \equiv S\binom{p}{q} \tag{3.8}
\end{equation*}
$$

with $a=\sqrt{\langle A q, q\rangle-\langle p, q\rangle-\langle q, q\rangle^{2}}$.
Proposition 3.2. S is a symplectic map in $\left(\mathbb{R}^{2 N}, \mathrm{~d} p \wedge \mathrm{~d} q\right)$.
Proof. Let $\tilde{p}=a q, \tilde{q}=a^{-1} r$. A direct calculation gives $\mathrm{d} \tilde{p} \wedge \mathrm{~d} \tilde{q}=\mathrm{d} p \wedge \mathrm{~d} q$.
In order to prove the integrability of S, we consider

$$
\begin{align*}
& G_{\lambda}=g_{-1}+\sum_{j=1}^{N} \frac{\nabla \alpha_{j}}{\lambda-\alpha_{j}}=\binom{Q_{\lambda}(q, E q)}{\frac{1}{2}\left\{1+Q_{\lambda}(q, q)\right\}} \tag{3.9}\\
& V_{\lambda}=\sigma(\lambda)\left[G_{\lambda}\right]=\left(\begin{array}{cc}
\frac{1}{2} \lambda & -\langle p, q\rangle \\
1 & -\frac{1}{2} \lambda
\end{array}\right)+\left(\begin{array}{ll}
Q_{\lambda}(p, q) & -Q_{\lambda}(p, p) \\
Q_{\lambda}(q, q) & -Q_{\lambda}(p, q)
\end{array}\right) \tag{3.10}\\
& F_{\lambda}=\operatorname{det} V_{\lambda} \tag{3.11}
\end{align*}
$$

where (3.10) is obtained by direct calculations resorting to (3.2) with

$$
Q_{\lambda}(\xi, \eta)=\left\langle(\lambda-A)^{-1} \xi, \eta\right\rangle=\sum_{j=1}^{N} \frac{\xi_{j} \eta_{j}}{\lambda-\alpha_{j}}
$$

It is easy to prove that under the Bargmann constraint (3.6), $(K-\lambda J) G_{\lambda}=0$. Hence by (2.4) the Lax matrix V_{λ} satisfies

$$
\begin{equation*}
\left(E V_{\lambda}\right) U-U V_{\lambda}=0 \tag{3.12}
\end{equation*}
$$

According to corollary 2.2, F_{λ} is invariant under the symplectic map S and yields the integrals $\left\{F_{j}\right\}$ as follows:

$$
\begin{align*}
F_{\lambda} & =\left\{Q_{\lambda}(p, p)+\langle p, q\rangle\right\}\left\{Q_{\lambda}(q, q)+1\right\}-\left\{Q_{\lambda}(p, q)+\frac{1}{2} \lambda\right\}^{2} \\
& =-\frac{1}{4} \lambda^{2}+Q_{\lambda}(p, p)+\langle p, q\rangle Q_{\lambda}(q, q)-Q_{\lambda}(A p, q)+Q_{\lambda}(p, p) Q_{\lambda}(q, q)-Q_{\lambda}^{2}(p, q) \\
& =-\frac{1}{4} \lambda^{2}+\sum_{k=0}^{\infty} \lambda^{-k-1} F_{k} \tag{3.13}
\end{align*}
$$

where

$$
\begin{aligned}
F_{0}=\langle p, p\rangle+ & \langle p, q\rangle\langle q, q\rangle-\langle A p, q\rangle \\
F_{k}=\left\langle A^{k} p, p\right\rangle & +\langle p, q\rangle\left\langle A^{k} q, q\right\rangle-\left\langle A^{k+1} p, q\right\rangle \\
& +\sum_{i+j=k-1}\left\{\left\langle A^{i} p, p\right\rangle\left\langle A^{j} q \cdot q\right\rangle-\left\langle A^{i} p, q\right\rangle\left\langle A^{j} p, q\right\rangle\right\} .
\end{aligned}
$$

In order to prove the involutivity of $\left\{F_{k}\right\}$, we introduce the generating function method, which is convenient in a series of later calculations. Denote the variable of F_{λ}-flow by t_{λ}. Then

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}}\binom{p_{k}}{q_{k}}=\binom{-\partial F_{\lambda} / \partial q_{k}}{\partial F_{\lambda} / \partial p_{k}}=W\left(\lambda, \alpha_{k}\right)\binom{p_{k}}{q_{k}} \tag{3.14}\\
& W(\lambda, \mu)=\frac{2}{\lambda-\mu} V_{\lambda}-V_{\lambda}^{21} \sigma_{1}
\end{align*}
$$

Proposition 3.3.

$$
\begin{array}{lll}
\frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}} V_{\mu}=\left[W(\lambda, \mu), V_{\mu}\right] & \forall \lambda & \mu \in \mathbb{C} \\
\left(F_{\mu}, F_{\lambda}\right)=0 & \forall \lambda & \mu \in \mathbb{C} \\
\left(F_{j}, F_{k}\right)=0 & \forall j & k=0,1,2, \ldots \tag{3.17}
\end{array}
$$

Proof. A direct calculation gives (3.15), which implies the invariance of $F_{\mu}=\operatorname{det} V_{\mu}$ along the t_{λ}-flow:

$$
0=\frac{\mathrm{d} F_{\mu}}{\mathrm{d} t_{\lambda}}=\left(F_{\mu}, F_{\lambda}\right)
$$

The expansion of (3.16) according to the negative powers of λ, μ gives (3.17).

4. Decomposition of the Toda equation

Consider another generating function H_{λ} defined as the squared root of the normalized F_{λ} :

$$
\begin{equation*}
\left(1+4 H_{\lambda}\right)^{2}=-\frac{4}{\lambda^{2}} F_{\lambda}=1-\sum_{k=0}^{\infty} \frac{4 F_{k}}{\lambda^{k+3}} . \tag{4.1}
\end{equation*}
$$

It is easy to find the recursive formula for the polynomials determined by H_{λ} :

$$
\begin{align*}
& H_{\lambda}=\sum_{k=0}^{\infty} \frac{H_{k}}{\lambda^{k+3}} \\
& H_{m}=-\frac{1}{2} F_{m} \quad m=0,1,2 \tag{4.2}\\
& H_{k+3}=-\frac{1}{2} F_{k+3}-2 \sum_{\substack{i+j=k \\
i, j \geqslant 0}} H_{i} H_{j} \quad k=0,1,2, \ldots
\end{align*}
$$

Exerting $J^{-1} K$ on the Bargmann constraint (3.6) k times gives

$$
\begin{equation*}
\sum_{j=1}^{N} \alpha_{j}^{k} \nabla \alpha_{j}=g_{k}+c_{2} g_{k-2}+\cdots+c_{k+1} g_{-1}+c_{k+2}^{\prime} g_{-2} \tag{4.3}
\end{equation*}
$$

where there are two extra terms $c g_{-1}+c^{\prime} g_{-2}$ each time, since the linear space ker J is two dimensional with the generators g_{-1} and g_{-2}.
Proposition 4.1. f_{S} maps the solution of the discrete flow

$$
\begin{equation*}
\binom{p(n)}{q(n)}=S^{n}\binom{p_{0}}{q_{0}} \tag{4.4}
\end{equation*}
$$

into the solution $(a, b)^{T}=f_{S}(p, q)$ of the stationary Toda equation

$$
\begin{equation*}
X_{N}+c_{N 1} X_{N-1}+\cdots+c_{N N} X_{0}=0 \tag{4.5}
\end{equation*}
$$

Proof. The linear combination of (4.3) gives

$$
\begin{equation*}
0=\sum_{j=1}^{N} \alpha\left(\alpha_{j}\right) \nabla \alpha_{j}=g_{N}+c_{N 1} g_{N-1}+\cdots+c_{N, N+2} g_{-2} \tag{4.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(\lambda)=\prod_{j=1}^{N}\left(\lambda-\alpha_{j}\right)=\sum_{k=0}^{N} a_{N-k} \lambda^{k} . \tag{4.7}
\end{equation*}
$$

Acting with J on (4.6) yields (4.5).
Multiplied by λ^{-k-1} and summed with respect to k from 0 to ∞, equation (4.3) becomes

$$
\begin{equation*}
G_{\lambda}=c_{\lambda} g_{\lambda}+c_{\lambda}^{\prime} g_{-2} \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\lambda}=1+\sum_{k=0}^{\infty} c_{k+2} \lambda^{-k-2} \quad c_{\lambda}^{\prime}=1+\sum_{k=0}^{\infty} c_{k+3}^{\prime} \lambda^{-k-2} \tag{4.9}
\end{equation*}
$$

Hence

$$
\begin{align*}
& V_{\lambda}=c_{\lambda} \sigma\left[g_{\lambda}\right] \tag{4.10}\\
& F_{\lambda}=c_{\lambda}^{2} \operatorname{det} \sigma\left[g_{\lambda}\right]=-\frac{1}{4} \lambda^{2} c_{\lambda}^{2} \tag{4.11}\\
& c_{\lambda}=1+4 H_{\lambda} \tag{4.12}
\end{align*}
$$

where (2.10) is used. By (4.2) we have

$$
\begin{equation*}
c_{2}=0 \quad c_{k}=4 H_{k+3} \tag{4.13}
\end{equation*}
$$

Lemma 4.2. Let $(a, b)^{T}=f_{S}(p, q)$. Then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}}\binom{a}{b}=-2 J G_{\lambda} \tag{4.14}
\end{equation*}
$$

Proof. By (2.5) and (3.9), we obtain

$$
J G_{\lambda}=\binom{\frac{1}{2} a \Delta Q_{\lambda}(q, q)}{\Delta Q_{\lambda}(p, q)}
$$

A direct calculation shows that the two components of both sides of (4.14) are equal to
$\frac{1}{a}\left\{\left[a^{2}-(\lambda-b)^{2}\right] Q_{\lambda}(q, q)+2(\lambda-b) Q_{\lambda}(p, q)-Q_{\lambda}(p, p)+\left[a^{2}-\langle p, q\rangle+\lambda b-b^{2}\right]\right\}$
$2(b-\lambda) Q_{\lambda}(q, q)+4 Q_{\lambda}(p, q)+2 b$.
Theorem 4.3.
(a) $\quad \mathrm{d} f_{S}\left(I \nabla H_{k}\right)=X_{k}$.
(b) Let $\left(p\left(n, \tau_{k}\right), q\left(n, \tau_{k}\right)\right)^{T}$ be the compatible solution of the H_{k}-flow (with the variable τ_{k}) and the discrete flow generated by the symplectic map S (with the variable n). Then f_{S} maps it into the solution of the kth Toda equation:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau_{k}}\binom{a}{b}=X_{k} \quad k=0,1,2, \ldots \tag{4.16}
\end{equation*}
$$

where $(a, b)^{T}$ is calculated by (3.7).

Proof. Let τ_{λ} be the variable of the H_{λ}-flow. According to (4.1) and (4.12), it is easy to verify that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\lambda}}=\frac{-1}{2 \lambda^{2} c_{\lambda}} \frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}} \tag{4.17}
\end{equation*}
$$

By (4.14), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\lambda}}\binom{a}{b}=\frac{1}{\lambda^{2}} J g_{\lambda} .
$$

Hence we have (4.16).

5. Straightening out of the $\boldsymbol{H}_{\boldsymbol{k}}$-flow

Factorize $F_{\lambda}, V_{\lambda}^{12}$ and V_{λ}^{21} as rational functions of λ :

$$
\begin{align*}
& F_{\lambda}=-V_{\lambda}^{12} V_{\lambda}^{21}-\left(V_{\lambda}^{11}\right)^{2}=\frac{-\beta(\lambda)}{4 \alpha(\lambda)}=\frac{-R(\lambda)}{4 \alpha^{2}(\lambda)} \tag{5.1}\\
& V_{\lambda}^{12}=-Q_{\lambda}(p, p)-\langle p, q\rangle=-\langle p, q\rangle \frac{m(\lambda)}{\alpha(\lambda)} \tag{5.2}\\
& V_{\lambda}^{21}=1+Q_{\lambda}(q, q)=\frac{n(\lambda)}{\alpha(\lambda)} \tag{5.3}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha(\lambda)=\prod_{j=1}^{N}\left(\lambda-\alpha_{j}\right) \quad \beta(\lambda)=\prod_{j=1}^{N+2}\left(\lambda-\beta_{j}\right) \\
& R(\lambda)=\alpha(\lambda) \beta(\lambda)=\prod_{j=1}^{2 N+2}\left(\lambda-\lambda_{j}\right) \\
& m(\lambda)=\prod_{j=1}^{N}\left(\lambda-\mu_{j}\right) \quad n(\lambda)=\prod_{j=1}^{N}\left(\lambda-v_{j}\right)
\end{aligned}
$$

with $\lambda_{j}=\alpha_{j}, j=1, \ldots, N ; \lambda_{N+j}=\beta_{j}, j=1, \ldots, N+2 .\left\{\mu_{j}\right\}$ and $\left\{v_{j}\right\}$ are called elliptic coordinates. By comparing the coefficients of λ^{-k} in the expansions of (5.2) and (5.3) we have

$$
\begin{align*}
& \frac{\langle p, p\rangle}{\langle p, q\rangle}=\sum_{j=1}^{N}\left(\alpha_{j}-\mu_{j}\right) \tag{5.4}\\
& \langle q, q\rangle=\sum_{j=1}^{N}\left(\alpha_{j}-v_{j}\right) \tag{5.5}\\
& \langle A q, q\rangle=\frac{1}{2} \sum_{j=1}^{N}\left(\alpha_{j}^{2}-v_{j}^{2}\right)+\frac{1}{2}\left(\sum_{j=1}^{N}\left(\alpha_{j}-v_{j}\right)\right)^{2} . \tag{5.6}
\end{align*}
$$

In order to have the evolution of the elliptic coordinates along the t_{λ}-flow, we use the components of the Lax equation (3.14):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}} V_{\mu}^{12} & =-2 W_{\lambda \mu}^{12} V_{\mu}^{11}+2 W_{\lambda \mu}^{11} V_{\mu}^{12} \\
\frac{\mathrm{~d}}{\mathrm{~d} t_{\lambda}} V_{\mu}^{21} & =2 W_{\lambda \mu}^{21} V_{\mu}^{11}-2 W_{\lambda \mu}^{11} V_{\mu}^{21}
\end{aligned}
$$

and (5.1) with $\lambda=\mu_{k}, v_{k}$:

$$
V_{\mu_{k}}^{11}=\frac{\sqrt{R\left(\mu_{k}\right)}}{2 \alpha\left(\mu_{k}\right)} \quad V_{v_{k}}^{11}=\frac{\sqrt{R\left(v_{k}\right)}}{2 \alpha\left(v_{k}\right)}
$$

A direct calculation gives

$$
\begin{align*}
& \frac{1}{2 \sqrt{R\left(\mu_{k}\right)}} \frac{\mathrm{d} \mu_{k}}{\mathrm{~d} t_{\lambda}}=\frac{m(\lambda)}{\alpha(\lambda)\left(\lambda-\mu_{k}\right) m^{\prime}\left(\mu_{k}\right)} \tag{5.7}\\
& \frac{1}{2 \sqrt{R\left(v_{k}\right)}} \frac{\mathrm{d} \nu_{k}}{\mathrm{~d} t_{\lambda}}=\frac{-n(\lambda)}{\alpha(\lambda)\left(\lambda-v_{k}\right) n^{\prime}\left(v_{k}\right)} . \tag{5.8}
\end{align*}
$$

Resorting to the interpolation formula, we have $(j=1,2, \ldots, N)$

$$
\begin{align*}
& \sum_{k=1}^{N} \frac{\mu_{k}^{N-j}}{2 \sqrt{R\left(\mu_{k}\right)}} \frac{\mathrm{d} \mu_{k}}{\mathrm{~d} t_{\lambda}}=\frac{\lambda^{N-j}}{\alpha(\lambda)} \tag{5.9}\\
& \sum_{k=1}^{N} \frac{v_{k}^{N-j}}{2 \sqrt{R\left(v_{k}\right)}} \frac{\mathrm{d} v_{k}}{\mathrm{~d} t_{\lambda}}=\frac{-\lambda^{N-j}}{\alpha(\lambda)} . \tag{5.10}
\end{align*}
$$

Consider the algebraic curve Γ given by the affine equation, $\xi^{2}-R(\lambda)=0$, with genus $g=N$ and the usual holomorphic differentials

$$
\begin{equation*}
\tilde{\omega}_{j}=\frac{\lambda^{g-j} \mathrm{~d} \lambda}{2 \sqrt{R(\lambda)}} \quad j=1, \ldots, g . \tag{5.11}
\end{equation*}
$$

Denote $P(\lambda)=(\lambda, \xi=\sqrt{R(\lambda)})$. For fixed point P_{0} on Γ, introduce the quasi-Abel-Jacobi coordinates by

$$
\begin{equation*}
\tilde{\psi}_{j}=\sum_{k=1}^{g} \int_{P_{0}}^{P\left(\mu_{k}\right)} \tilde{\omega}_{j} \quad \tilde{\phi}_{j}=\sum_{k=1}^{g} \int_{P_{0}}^{P\left(v_{k}\right)} \tilde{\omega}_{j} \quad j=1, \ldots, g . \tag{5.12}
\end{equation*}
$$

Then (5.9) and (5.10) are rewritten as

$$
\begin{equation*}
\frac{\mathrm{d} \tilde{\psi}_{j}}{\mathrm{~d} t_{\lambda}}=\frac{\lambda^{g-j}}{\alpha(\lambda)} \quad \frac{\mathrm{d} \tilde{\phi}_{j}}{\mathrm{~d} t_{\lambda}}=\frac{-\lambda^{g-j}}{\alpha(\lambda)} \tag{5.13}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\mathrm{d} \tilde{\psi}_{j}}{\mathrm{~d} \tau_{\lambda}}=\frac{-\lambda^{g-j}}{2 \lambda \sqrt{R(\lambda)}} \quad \frac{\mathrm{d} \tilde{\phi}_{j}}{\mathrm{~d} \tau_{\lambda}}=\frac{\lambda^{g-j}}{2 \lambda \sqrt{R(\lambda)}} \tag{5.14}
\end{equation*}
$$

by (4.17), (4.12), (5.1) and (4.11).
Let $a_{1}, b_{1}, \ldots, a_{g}, b_{g}$ be the canonical basis of the homology group of cycles on Γ, and

$$
\begin{equation*}
C=\left(A_{j k}\right)_{g \times g}^{-1} \quad A_{j k}=\int_{a_{k}} \tilde{\omega}_{j} . \tag{5.15}
\end{equation*}
$$

For the normalized holomorphic differential

$$
\begin{equation*}
\omega=C \tilde{\omega} \quad \omega_{s}=\sum_{j=1}^{g} C_{s j} \tilde{\omega}_{j} \tag{5.16}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{a_{k}} \omega_{j}=\delta_{j k} \quad \int_{b_{k}} \omega_{j}=B_{j k} \tag{5.17}
\end{equation*}
$$

where the matrix $B=\left(B_{j k}\right)$ is symmetric and has a positive-definite imaginary part and is used to construct the Riemann theta function of Γ [21]:

$$
\theta(\zeta)=\sum_{z \in \mathbb{Z}^{g}} \exp \pi \sqrt{-1}(\langle B z, z\rangle+2\langle\zeta, z\rangle) \quad \zeta \in \mathbb{C}^{g}
$$

The Abel map $\mathcal{A}: \operatorname{Div}(\Gamma) \rightarrow \mathcal{J}(\Gamma)=\mathbb{C}^{g} / \mathcal{T}$ is defined by

$$
\begin{equation*}
\mathcal{A}(P)=\int_{P_{0}}^{P} \omega \quad \mathcal{A}\left(\sum n_{k} P_{k}\right)=\sum n_{k} \mathcal{A}\left(P_{k}\right) \tag{5.18}
\end{equation*}
$$

where $\operatorname{Div}(\Gamma)$ is the divisor group, and the lattice \mathcal{J} is spanned by the periodic vectors $\left\{\delta_{j}, B_{j}\right\}$, which are the column vectors of the unit matrix and B. Introduce the Abel-Jacobi coordinates

$$
\begin{align*}
& \psi=\mathcal{A}\left(\sum_{k=1}^{g} P\left(\mu_{k}\right)\right)=C \tilde{\psi} \\
& \phi=\mathcal{A}\left(\sum_{k=1}^{g} P\left(v_{k}\right)\right)=C \tilde{\phi} \tag{5.19}
\end{align*}
$$

Through direct calculations we have the following assertions.
Lemma 5.1. Let $S_{k}=\lambda_{1}^{k}+\cdots+\lambda_{2 g+2}^{k}$. Then the coefficients in

$$
\begin{equation*}
\frac{\lambda^{g+1}}{\sqrt{R(\lambda)}}=\sum_{k=0}^{\infty} \Lambda_{k} \lambda^{-k} \tag{5.20}
\end{equation*}
$$

satisfy the recursive formula

$$
\begin{align*}
& \Lambda_{0}=1 \quad \Lambda_{1}=\frac{1}{2} S_{1} \\
& \Lambda_{k}=\frac{1}{2 k}\left(S_{k}+\sum_{\substack{i+j=k \\
i, j \geqslant 1}} S_{i} \Lambda_{j}\right) . \tag{5.21}
\end{align*}
$$

Lemma 5.2. Let C_{1}, \ldots, C_{g} be the column vectors of C. Then the coefficient of the expansion

$$
\begin{equation*}
\frac{\lambda^{g+1}}{2 \sqrt{R(\lambda)}}\left(C_{1} \lambda^{-1}+\cdots+C_{g} \lambda^{-g}\right)=\sum_{k=0}^{\infty} \Omega_{k} \lambda^{-k-1} \tag{5.22}
\end{equation*}
$$

is written as

$$
\begin{equation*}
\Omega_{k}=\frac{1}{2}\left(\Lambda_{k} C_{1}+\Lambda_{k-1} C_{2}+\cdots+\Lambda_{k-g+1} C_{g}\right) \tag{5.23}
\end{equation*}
$$

if we defined $\Lambda_{-s}=0, s=0,1,2, \ldots$ Specifically,

$$
\Omega_{0}=\frac{1}{2} C_{1} \quad \Omega_{1}=\frac{1}{2}\left(\Lambda_{1} C_{1}+C_{2}\right) \quad \Omega_{2}=\frac{1}{2}\left(\Lambda_{2} C_{1}+\Lambda_{1} C_{2}+C_{3}\right) .
$$

Theorem 5.3. The H_{k}-flow is straightened out by the Abel-Jacobi coordinates:

$$
\begin{equation*}
\frac{\mathrm{d} \psi}{\mathrm{~d} \tau_{k}}=-\Omega_{k} \quad \frac{\mathrm{~d} \phi}{\mathrm{~d} \tau_{k}}=\Omega_{k} \tag{5.24}
\end{equation*}
$$

Proof. By (5.19), (5.14) and (5.22) we obtain

$$
\begin{equation*}
\frac{\mathrm{d} \psi}{\mathrm{~d} \tau_{\lambda}}=-\sum_{k=0}^{\infty} \Omega_{k} \lambda^{-k-3} \quad \frac{\mathrm{~d} \phi}{\mathrm{~d} \tau_{\lambda}}=\sum_{k=0}^{\infty} \Omega_{k} \lambda^{-k-3} \tag{5.25}
\end{equation*}
$$

which imply (5.24) since for arbitrary f we have
$\frac{\mathrm{d} f}{\mathrm{~d} \tau_{\lambda}}=\left(f, H_{\lambda}\right)=\sum_{k=0}^{\infty}\left(f, H_{k}\right) \lambda^{-k-3}=\sum_{k=0}^{\infty} \frac{\mathrm{d} f}{\mathrm{~d} \tau_{k}} \lambda^{-k-3}$.

6. Straightening out of the discrete flow

In this section p and q are designated as scalars, not N-dimensional vectors. It would not cause any confusion since no p and q are contained in the final results of this section. Consider the Toda eigenvalue problem

$$
\chi(n+1)=U_{n} \chi(n) \quad U_{n}=\frac{1}{a_{n}}\left(\begin{array}{cc}
0 & a_{n}^{2} \tag{6.1}\\
-1 & \lambda-b_{n}
\end{array}\right)
$$

where $\chi(n)=(p(n), q(n))^{T}$. The fundamental solution matrix

$$
M_{n}=\left(\chi^{(1)}(n), \chi^{(2)}(n)\right)=\left(\begin{array}{ll}
p^{(1)}(n) & p^{(2)}(n) \\
q^{(1)}(n) & q^{(2)}(n)
\end{array}\right) \quad M_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

can be expressed explicitly as

$$
\begin{equation*}
M_{n+1}=U_{n} U_{n-1} \ldots U_{0} \tag{6.2}
\end{equation*}
$$

By mathematical induction, it is easy to prove that

$$
\begin{align*}
& M_{1}=\frac{1}{a_{0}}\left(\begin{array}{cc}
0 & a_{0}^{2} \\
-1 & \lambda-b_{0}
\end{array}\right) \\
& M_{2}=\frac{1}{a_{0} a_{1}}\left(\begin{array}{cc}
-a_{1}^{2} & a_{1}^{2}\left(\lambda-b_{0}\right) \\
-\left(\lambda-b_{0}\right) & \left(\lambda-b_{1}\right)\left(\lambda-b_{0}\right)-a_{0}^{2}
\end{array}\right) \\
& p^{(1)}(n)=\frac{-a_{n-1}}{a_{0} \ldots a_{n-2}}\left\{\lambda^{n-2}-\left(\sum_{j=1}^{n-2} b_{j}\right) \lambda^{n-3}+\cdots\right\} \\
& p^{(2)}(n)=\frac{a_{n-1}}{a_{0} \ldots a_{n-2}}\left\{\lambda^{n-1}-\left(\sum_{j=1}^{n-2} b_{j}\right) \lambda^{n-2}+\cdots\right\} \tag{6.3}\\
& q^{(1)}(n)=\frac{-1}{a_{0} \ldots a_{n-1}}\left\{\lambda^{n-1}-\left(\sum_{j=1}^{n-1} b_{j}\right) \lambda^{n-2}+\cdots\right\} \\
& q^{(2)}(n)=\frac{1}{a_{0} \ldots a_{n-1}}\left\{\lambda^{n}-\left(\sum_{j=1}^{n-1} b_{j}\right) \lambda^{n-1}+\cdots\right\} .
\end{align*}
$$

The Lax matrix V_{λ} of the symplectic map S defined by (3.10) satisfies the discrete Lax equation (3.12), which implies that the solution space of the linear equation $E \chi=U \chi$ is invariant under the action of V_{λ}. Let ρ be the eigenvalue of V_{λ} in the solution space, and χ be the eigenfunction, which is called the Baker function (after some normalization):

$$
\begin{equation*}
E \chi=U \chi \quad V_{\lambda} \chi=\rho \chi \tag{6.4}
\end{equation*}
$$

Evidently, det $\left|\rho-V_{\lambda}\right|=\rho^{2}+F_{\lambda}=0$. Thus there are two eigenvalues $\rho^{ \pm}= \pm \rho$, whereby (5.1), (4.11), (4.12):

$$
\begin{equation*}
\rho=\frac{\lambda}{2}\left(1+4 H_{\lambda}\right)=\frac{\sqrt{R(\lambda)}}{2 \alpha(\lambda)}=\frac{\lambda}{2}+\mathrm{O}\left(\frac{1}{\lambda^{2}}\right) \tag{6.5}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& V_{\lambda}^{11}+\rho=\lambda+Q_{\lambda}(p, q)+2 \lambda H_{\lambda}=\lambda+\mathrm{O}\left(\frac{1}{\lambda}\right) \\
& V_{\lambda}^{11}-\rho=Q_{\lambda}(p, q)-2 \lambda H_{\lambda}=\frac{\langle p, q\rangle}{\lambda}+\mathrm{O}\left(\frac{1}{\lambda^{2}}\right) \tag{6.6}
\end{align*}
$$

An elementary discussion shows that the corresponding Baker functions can be taken as

$$
\begin{align*}
& \chi^{ \pm}(n)=c^{ \pm} \chi^{(1)}(n)+\chi^{(2)}(n) \\
& c^{ \pm}=\frac{V_{\lambda}^{11}(0) \pm \rho}{V_{\lambda}^{21}(0)} \tag{6.7}
\end{align*}
$$

Lemma 6.1. Let $\left(E V_{\lambda}\right) U-U V_{\lambda}=0$. Then

$$
\begin{equation*}
V_{\lambda}(n) M_{n}=M_{n} V_{\lambda}(0) . \tag{6.8}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
V_{\lambda}(n) & =U_{n-1} V_{\lambda}(n-1) U_{n-1}^{-1} \\
& =U_{n-1} \ldots U_{0} V_{\lambda}(0) U_{0}^{-1} \ldots U_{n-1}^{-1} \\
& =M_{n} V_{\lambda}(0) M_{n}^{-1} .
\end{aligned}
$$

Proposition 6.2 (Formula of Dubrovin-Novikov type).

$$
\begin{equation*}
q^{+}(n, \lambda) q^{-}(n, \lambda)=\frac{V_{\lambda}^{21}(n)}{V_{\lambda}^{21}(0)}=\prod_{j=1}^{N} \frac{\lambda-v_{j}(n)}{\lambda-v_{j}(0)} \tag{6.9}
\end{equation*}
$$

where q^{+}and q^{-}are the second components of (6.7).

Proof. Through direct calculation with the use of (6.8), we obtain (6.9).
$q^{+}(n, \lambda)$ and $q^{-}(n, \lambda)$ can be considered as values of $q(n, P)$ on the upper and lower sheets of Γ, respectively. The function $[\rho]=[R(\lambda)]^{1 / 2} / 2 \alpha(\lambda)$ has the values $\sqrt{R(\lambda)} / 2 \alpha(\lambda)$ and $-\sqrt{R(\lambda)} / 2 \alpha(\lambda)$ on the upper and lower sheet, respectively. With the coordinate $z=\lambda^{-1}, \hat{\xi}=\xi z^{N+1}$, we have the equation of Γ near infinity:

$$
\hat{\xi}^{2}-R_{*}(z)=0 \quad R_{*}(z)=z^{2 N+2} R\left(z^{-1}\right)=\left(1-\lambda_{1} z\right) \ldots\left(1-\lambda_{2 N+2} z\right) .
$$

There are two infinities $\infty_{s}=\left(z=0, \hat{\xi}=(-1)^{s}\right), s=1,2$, which are located on the upper $(s=2)$ and lower $(s=1)$ sheet, respectively. By (6.3), (6.6) and (6.9), we have $(\lambda \rightarrow \infty)$

$$
\begin{aligned}
q^{-}(n, \lambda) & =\frac{\lambda^{n}}{a_{0} \ldots a_{n-1}}+\mathrm{O}\left(\lambda^{n-1}\right) \\
q^{+}(n, \lambda) & =a_{0} \ldots a_{n-1} \lambda^{-n}+\mathrm{O}\left(\lambda^{-n-1}\right)
\end{aligned}
$$

Resorting to these asymptotic behaviours and (6.7), (6.9), through an elementary analysis we have:

Proposition 6.3. The second component $q(n, P)$ of the Baker function has:
(a) g simple poles at $v_{1}(0), \ldots, v_{g}(0)$ and a zero of the nth order at ∞_{2};
(b) g simple zeros at $\nu_{1}(n), \ldots, v_{g}(n)$ and a pole of the nth order at ∞_{1}.

Consider the meromorphic differential on Γ

$$
\begin{equation*}
\omega_{S}(n)=\left\{\frac{\mathrm{d}}{\mathrm{~d} \lambda} \ln q(n, P)\right\} \mathrm{d} \lambda \tag{6.10}
\end{equation*}
$$

with the residue $-1,1$ at $v_{j}(0), v_{j}(n)$, respectively, and the residue $-n, n$ at ∞_{1}, ∞_{2}, respectively. Decompose (6.10) as a linear combination

$$
\begin{equation*}
\omega_{S}(n)=\Omega+n \omega\left(\infty_{2}, \infty_{1}\right)+\sum_{j=1}^{g} \omega\left[v_{j}(n), v_{j}(0)\right]+\sum_{j=1}^{g} \gamma_{j} \omega_{j} \tag{6.11}
\end{equation*}
$$

where ω_{j} is the normalized differential of the first kind given by (5.16), Ω is an Abel differential of the second kind and $\omega(P, Q)$ is the normal differential of the third kind with the residue $1,-1$ at P, Q, respectively, and the properties (see [15])

$$
\begin{align*}
& \int_{a_{j}} \omega(P, Q)=0 \tag{6.12}\\
& \int_{b_{j}} \omega(P, Q)=2 \pi \sqrt{-1} \int_{Q}^{P} \omega_{j} . \tag{6.13}
\end{align*}
$$

The integral of (6.10) along a_{i} gives $\gamma_{i}=2 \pi \sqrt{-1} n_{i}$, while the integral of (6.11) along b_{i} yields

$$
\begin{equation*}
\sum_{j=1}^{g} \int_{v_{j}(0)}^{v_{j}(n)} \omega=n \int_{\infty_{2}}^{\infty_{1}} \omega+\sum_{j=1}^{g}\left(n_{j} B_{j}+m_{j} \delta_{j}\right) \tag{6.14}
\end{equation*}
$$

where n_{j} and m_{j} are certain integers. Thus we obtain

Theorem 6.4.

$$
\begin{equation*}
\Delta \phi=\phi(n+1)-\phi(n)=\int_{\infty_{2}}^{\infty_{1}} \omega \equiv \Omega_{S} \quad(\bmod \mathcal{T}) \tag{6.15}
\end{equation*}
$$

7. Algebro-geometric solution of the special $2+1$ Toda equation

Lemma 7.1. Near ∞_{s}, in the local coordinate $z=\lambda^{-1}$, we have

$$
\begin{align*}
& \omega=(-1)^{s+1} \sum_{k=0}^{\infty} \Omega_{k} z^{k} \mathrm{~d} z \tag{7.1}\\
& \mathcal{A}(P(\lambda))=-\eta_{s}+(-1)^{s+1} \sum_{k=0}^{\infty} \frac{1}{k+1} \Omega_{k} z^{k+1} \tag{7.2}
\end{align*}
$$

where

$$
\begin{equation*}
\eta_{s}=\int_{\infty_{s}}^{P_{0}} \omega \tag{7.3}
\end{equation*}
$$

Proof. We have

$$
\omega=C \tilde{\omega}=\frac{\lambda^{g} \mathrm{~d} \lambda}{2[R(\lambda)]^{1 / 2}}\left(C_{1} \lambda^{-1}+\cdots+C_{g} \lambda^{-g}\right) .
$$

Near $\infty_{s},[R(\lambda)]^{1 / 2}$ takes the value $(-1)^{s} \sqrt{R(\lambda)}$. By (5.22) and through direct calculations, we obtain the required results.

From (3.7) and (5.5) we have the formula for the potential b :

$$
\begin{equation*}
b=\langle q, q\rangle=A_{1}-\sum_{j=1}^{g} v_{j} \tag{7.4}
\end{equation*}
$$

where $A_{1}=\sum \alpha_{j}$. In order to calculate $\sum v_{j}$, we use the Riemann theorem [21], which asserts that there exists a constant vector \mathcal{K} such that $\theta(\mathcal{A}(P(\lambda))-\phi-\mathcal{K})$ has exactly g zeros at $\lambda=v_{1}, \ldots, v_{g}$. Thus by a standard treatment $[1,21,22]$, we have

$$
\begin{align*}
\sum_{j=1}^{g} \nu_{j} & =I_{1}(\Gamma)-\sum_{s=1}^{2} \operatorname{Res}_{\lambda=\infty_{s}} \lambda \mathrm{~d} \ln \theta(\mathcal{A}(P(\lambda))-\phi-\mathcal{K}) \\
& =I_{1}(\Gamma)-\sum_{j=1}^{g} \Omega_{0}^{j} \frac{\partial}{\partial \zeta_{j}} \ln \frac{\theta\left(\phi+\mathcal{K}+\eta_{2}\right)}{\theta\left(\phi+\mathcal{K}+\eta_{1}\right)} \tag{7.5}
\end{align*}
$$

where

$$
\begin{equation*}
I_{k}(\Gamma)=\sum_{j=1}^{g} \int_{a_{j}} \lambda^{k} \omega_{j} \tag{7.6}
\end{equation*}
$$

Theorem 7.2. The special $(2+1)$-dimensional Toda equation (2.16) has the quasi-periodic solution

$$
\begin{align*}
Q_{n}(x, y)=\ln & \frac{\theta\left\{(n+1) \Omega_{S}+x \Omega_{0}+y \Omega_{1}+D_{1}\right\} \theta\left\{n \Omega_{S}+y \Omega_{1}+D_{1}\right\}}{\theta\left\{n \Omega_{S}+x \Omega_{0}+y \Omega_{1}+D_{1}\right\} \theta\left\{(n+1) \Omega_{S}+y \Omega_{1}+D_{1}\right\}} \\
& +\left\{A_{1}-I_{1}(\Gamma)\right\} x+Q_{n}(0, y) \tag{7.7}
\end{align*}
$$

where $D_{1}=\phi_{0}+\mathcal{K}+\eta_{1}$.

Proof. By the discussion with (2.16) and theorem 4.3, we have the decomposition diagram (1.3). Hence from theorem 5.3 and 6.4 we obtain the explicit solution written in the AbelJacobi coordinate: $\phi=n \Omega_{S}+x \Omega_{0}+y \Omega_{1}+\phi_{0}$, which is inverted by the above procedure into

$$
b_{n}(x, y)=\partial_{x} \ln \frac{\theta\left\{(n+1) \Omega_{S}+x \Omega_{0}+y \Omega_{1}+D_{1}\right\}}{\theta\left\{n \Omega_{S}+x \Omega_{0}+y \Omega_{1}+D_{1}\right\}}+A_{1}-I_{1}(\Gamma)
$$

where $\Omega_{S}=\eta_{2}-\eta_{1}$ is used. The relation $b_{n}=\partial_{x} Q_{n}$ implies (7.7).

8. The coupled KdV hierarchy and the KP equation

The canonical equations of the Hamiltonian

$$
\begin{equation*}
H_{0}=-\frac{1}{2} F_{0}=-\frac{1}{2}\langle p, p\rangle-\frac{1}{2}\langle p, q\rangle\langle q, q\rangle+\frac{1}{2}\langle A p, q\rangle \tag{8.1}
\end{equation*}
$$

defined by (4.2) and (3.13) can be put in the form

$$
\begin{align*}
& \binom{p_{j}}{q_{j}}_{x}=\hat{U}\binom{p_{j}}{q_{j}} \tag{8.2}\\
& \hat{U}=\frac{1}{2}\left(-\alpha_{j}+u\right) \sigma_{1}+v \sigma_{2}-\sigma_{3}
\end{align*}
$$

with

$$
\begin{equation*}
\binom{u}{v}=\binom{\langle q, q\rangle}{\langle p, q\rangle}=f_{c}(p, q) \tag{8.3}
\end{equation*}
$$

Equation (8.2) is exactly the eigenvalue problem which determine the cKdV soliton hierarchy [19]. We list the basic facts without proof as follows, which have quite a similar structure to those in the Toda case.

Proposition 8.1 (The fundamental identity). Let $\left(\partial=\partial / \partial_{x}\right)$
$\hat{V}=\hat{\sigma}(u, v, \lambda)[\gamma]=\left\{\frac{1}{2}(-\partial-u+\lambda) \gamma^{(2)}\right\} \sigma_{1}+\left\{\partial \gamma^{(1)}-v \gamma^{(2)}\right\} \sigma_{2}+\gamma^{(2)} \sigma_{3}$.
Then

$$
\begin{equation*}
\hat{V}_{x}-[\hat{U}, \hat{V}]=\hat{U}_{*}\{-(\hat{K}-\lambda \hat{J}) \gamma\} \tag{8.5}
\end{equation*}
$$

where

$$
\hat{K}=\left(\begin{array}{cc}
2 \partial & \partial^{2}+\partial u \tag{8.6}\\
-\partial^{2}+u \partial & v \partial+\partial v
\end{array}\right) \quad \hat{J}=\left(\begin{array}{cc}
0 & \partial \\
\partial & 0
\end{array}\right)
$$

The Lenard gradients are
$\hat{g}_{-2}=\binom{1}{0} \quad \hat{g}_{-1}=\binom{0}{1} \quad \hat{g}_{0}=\binom{v}{u} \quad \hat{g}_{1}=\binom{-v_{x}+2 u v}{u_{x}+u^{2}+2 v}$
$g_{2}=\binom{v_{x x}-3 u v_{x}+3 u^{2} v+3 v^{2}}{u_{x x}+3 u u_{x}+u^{3}+6 u v} \quad$ etc
with

$$
\begin{equation*}
\operatorname{det} \hat{\sigma}\left[\hat{g}_{\lambda}\right]=-\frac{1}{4} \lambda^{2} \quad \hat{g}_{\lambda}=\sum_{k=0}^{\infty} \hat{g}_{k-1} \lambda^{-k} \tag{8.8}
\end{equation*}
$$

The $c K d V$ vector field is defined as $Y_{j}=J g_{j}$ with

$$
\begin{align*}
Y_{0} & =\binom{u_{x}}{v_{x}} \quad Y_{1}=\binom{u_{x x}+2 u u_{x}+2 v_{x}}{-v_{x x}+2 u v_{x}+2 u_{x} v} \\
Y_{2} & =\binom{u_{x x x}-3 u u_{x x}+3 u_{x}^{2}+3 u^{2} u_{x}+6 u_{x} v+6 u v_{x}}{v_{x x x}-3 u v_{x x}-3 u_{x} v_{x}+3 u^{2} v_{x}+6 u u_{x} v+6 v v_{x}} . \tag{8.9}
\end{align*}
$$

Proposition 8.2. Let (u, v) be the compatible solution of the Y_{1-} and Y_{2}-flow:

$$
\begin{equation*}
\binom{u}{v}_{y}=Y_{1} \quad\binom{u}{v}_{t}=Y_{2} \tag{8.10}
\end{equation*}
$$

Then $w=2 v$ satisfies the $K P$ equation

$$
\begin{equation*}
w_{t x}=\frac{1}{4}\left(w_{x x}+3 w^{2}\right)_{x x}+\frac{3}{4} w_{y y} . \tag{8.11}
\end{equation*}
$$

Proof. Equation (8.11) is based on the results of the calculations

$$
\begin{aligned}
& v_{t x}=\left(v_{x x}+3 v^{2}-3 u v_{x}+3 u^{2} v\right)_{x x} \\
& \frac{3}{4} v_{y y}=\left(\frac{3}{4} v_{x x}+\frac{3}{2} v^{2}-u v_{x}+3 u^{2} v\right)_{x x} .
\end{aligned}
$$

Proposition 8.3.

$$
\begin{align*}
& \hat{\nabla} \alpha_{j}=\binom{\delta \alpha_{j} / \delta u}{\delta \alpha_{j} / \delta v}=\binom{p_{j} q_{j}}{q_{j}^{2}} \tag{8.12}\\
& \hat{\sigma}\left(u, v, \alpha_{j}\right) \hat{\nabla} \alpha_{j}=\left(\begin{array}{cc}
p_{j} q_{j} & -p_{j}^{2} \\
q_{j}^{2} & -p_{j} q_{j}
\end{array}\right) \equiv \varepsilon_{j} \tag{8.13}\\
& \varepsilon_{j, x}-\left[\hat{U}\left(\alpha_{j}\right), \varepsilon_{j}\right]=0 \tag{8.14}\\
& \left(\hat{K}-\alpha_{j} \hat{J}\right) \hat{\nabla} \alpha_{j}=0 . \tag{8.15}
\end{align*}
$$

The constraint (8.3) could be put in Bargmann form

$$
\begin{equation*}
\hat{g}_{0}=\sum_{j=1}^{N} \hat{\nabla} \alpha_{j} \tag{8.16}
\end{equation*}
$$

Just as in (3.9) we construct

$$
\begin{equation*}
\hat{G}_{\lambda}=\hat{g}_{-1}+\sum_{j=1}^{N} \frac{\hat{\nabla} \alpha_{j}}{\lambda-\alpha_{j}}=\binom{Q_{\lambda}(p, q)}{1+Q_{\lambda}(q, q)} . \tag{8.17}
\end{equation*}
$$

Proposition 8.4. The symplectic map S and the Bargmann system $\left(H_{0}\right)=(8.2)+(8.16)$ have the same Lax matrix $V_{\lambda}=\hat{V}_{\lambda}$ and the same conserved integrals $\left\{F_{j}\right\}$ or $\left\{H_{j}\right\}$.

Proof. A direct calculation shows that

$$
\hat{V}_{\lambda}=\hat{\sigma}_{\lambda}\left(\hat{G}_{\lambda}\right)=\frac{1}{2}(-u+\lambda) \sigma_{1}-v \sigma_{2}+\sigma_{3}+\frac{1}{2} \sum_{j=1}^{N} q_{j}^{2} \sigma_{1}+\sum_{j=1}^{N} \frac{\varepsilon_{j}}{\lambda-\alpha_{j}}
$$

which coincides with (3.10) as $u=\langle q, q\rangle$.
Proposition 8.5. f_{c} defined by (8.3) maps the solution of the Bargmann system (8.2) $+(8.16)$ into the solution of the stationary $c K d V$ equation

$$
\begin{equation*}
Y_{N}+\hat{c}_{N 1} Y_{N-1}+\cdots+\hat{c}_{N N} Y_{0}=0 \tag{8.18}
\end{equation*}
$$

Lemma 8.6. Let $(u, v)^{T}=f_{c}(p, q)$ and $t_{\lambda}, \tau_{\lambda}$ be the variables of the F_{λ} - and H_{λ}-flow, respectively. Then
(a)

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t_{\lambda}}\binom{u}{v}=\mathrm{d} f_{c}\left(I \nabla F_{\lambda}\right)=-2 \hat{J} \hat{G}_{\lambda} . \tag{8.19}
\end{equation*}
$$

(b) $\quad \frac{\mathrm{d}}{\mathrm{d} \tau_{\lambda}}\binom{u}{v}=\mathrm{d} f_{c}\left(I \nabla H_{\lambda}\right)=\lambda^{-2} \hat{J} \hat{g}_{\lambda}$.
(c) $\quad \mathrm{d} f_{c}\left(I \nabla H_{\lambda}\right)=Y_{k}$.

Theorem 8.7. (a) Let $(p, q)^{T}$ be the compatible solution of the H_{0}-flow (x) and the H_{k}-flow $\left(\tau_{k}\right)$. Then $(u, v)^{T}=f_{c}(p, q)$ satisfies the $k t h c K d V$ equation

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau_{k}}\binom{u}{v}=Y_{k} .
$$

(b) Let $(p(x, y, t), q(x, y, t))^{T}$ be the compatible solution of the $H_{0}-, H_{1}$ - and H_{2}-flow (with variables x, y and t, respectively). Then $w(x, y, t)=2 v=2\langle p, q\rangle$ solves the $K P$ equation (8.11).

Proof. (a) is a corollary of lemma 8.6, while (b) is obtained by taking into account proposition 8.2.

Theorem 8.8. The KP equation (8.11) has the solution

$$
\begin{equation*}
w(x, y, t)=2 \partial_{x}^{2} \ln \theta\left(x \Omega_{0}+y \Omega_{1}+t \Omega_{2}+D_{1}\right)+w_{0} \tag{8.22}
\end{equation*}
$$

where $D_{1}=\phi_{0}+\mathcal{K}+\eta_{1}$, $w_{0}=\sum \alpha_{j}^{2}-I_{2}(\Gamma)+c$.
Proof. Theorem 8.7 yields the decomposition diagram (1.4) of the KP equation, whose special solution is expressed very simply by the Abel-Jacobi coordinate: $\phi=\phi_{0}+x \Omega_{0}+y \Omega_{1}+t \Omega_{2}$. What we need to do is to invert it into the usual coordinate.

By making use of (8.2), we have

$$
u_{x}+u^{2}+2 v=\langle A q, q\rangle
$$

from $u=\langle q, q\rangle$. On the other hand, they can be expressed through the elliptic coordinates by (5.5) and (5.6):

$$
\begin{align*}
& u=\sum_{j=1}^{g}\left(\alpha_{j}-v_{j}\right) \tag{8.23}\\
& u_{x}+u^{2}+2 v=\frac{1}{2} \sum_{j=1}^{g}\left(\alpha_{j}^{2}-v_{j}^{2}\right)+\frac{1}{2} u^{2}
\end{align*}
$$

Since $\left\{v_{j}\right\}$ are the zeros of $\theta(\mathcal{A}(P(\lambda))-\phi-\mathcal{K})$ by Riemann's theorem (see section 7), an ordinary treatment gives [1,21,22]

$$
\begin{aligned}
& \sum_{j=1}^{g} v_{j}=I_{1}(\Gamma)+\Omega_{0}^{j} \partial_{j} \ln \frac{\theta_{1}}{\theta_{2}} \\
& \sum_{j=1}^{g} v_{j}^{2}=I_{2}(\Gamma)+\Omega_{1}^{j} \partial_{j} \ln \frac{\theta_{1}}{\theta_{2}}-\Omega_{0}^{j} \Omega_{0}^{k} \partial_{j k}^{2} \ln \theta_{1} \theta_{2}
\end{aligned}
$$

with

$$
\theta_{s}=\theta\left(x \Omega_{0}+y \Omega_{1}+t \Omega_{2}+D_{s}\right) \quad D_{s}=\phi_{0}+\mathcal{K}+\eta_{s}
$$

where $I_{k}(\Gamma)$ is given by (7.6), $\partial_{j}=\partial / \partial \zeta_{j}$, etc, and the Einstein summation convention is used. Hence

$$
\begin{align*}
& \sum_{j=1}^{g} v_{j}=I_{1}(\Gamma)+\partial_{x} \ln \frac{\theta_{1}}{\theta_{2}} \tag{8.24}\\
& \sum_{j=1}^{g} v_{j}^{2}=I_{2}(\Gamma)+\partial_{y} \ln \frac{\theta_{1}}{\theta_{2}}-\partial_{x}^{2} \ln \theta_{1} \theta_{2}
\end{align*}
$$

By making use of the equation for Y_{1}-flow (8.9) + (8.10)

$$
-\partial_{x y}^{2} \ln \frac{\theta_{1}}{\theta_{2}}=u_{y}=\left(u_{x}+u^{2}+2 v\right)_{x}
$$

we have

$$
-\partial_{y} \ln \frac{\theta_{1}}{\theta_{2}}=u_{x}+u^{2}+2 v+c
$$

Put this into (8.24), then substitute (8.24) into (8.23). Finally, we have

$$
2 v=2 \partial_{x}^{2} \ln \theta_{1}+\sum \alpha_{j}^{2}-I_{2}(\Gamma)+c .
$$

This completes the proof.

Acknowledgments

This work was partially supported by Research Project of Nonlinear Science and Hong Kong RGC/97-98/21. Project 19671074 was supported by the National Natural Science Foundation of China. XGG would like to thank the Henan Science Foundation Committee of China for financial support. The authors greatly appreciate the referees for helpful comments.

References

[1] Cao C W, Wu Y T and Geng X G 1999 J. Math. Phys. 403948
[2] Ragnisco O, Cao C W and Wu Y T 1995 J. Phys. A: Math. Gen. 28573
[3] Cao C W 1994 Phys. Lett. A 184333
[4] Wu Y T and Mitsui T 1996 Japan. J. Indust. Appl. Math. 13333
[5] Arnold V I 1978 Mathematical Methods of Classical Mechanics (Berlin: Springer)
[6] Moser J 1986 Beijing Symp. on Differential Geometry and Differential Equations (Beijing, 1983) (Beijing: Science) pp 157-229
[7] McKean H P and Trubowitz E 1976 Commun. Pure Appl. Math. 29143
[8] Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (SIAM Studies in Applied Mathematics) (Philadelphia, PA: SIAM)
[9] Cao C W and Geng X G 1990 Nonlinear Physics (Research Reports in Physics) (Berlin: Springer) pp 68-78
[10] Cao C W 1991 Acta Math. Sinica 7216
[11] Cao C W 1990 Sci. China 33528
[12] Konopelchenko B, Sidorenko J and Strampp W 1991 Phys. Lett. A 15717
[13] Cheng Y and Li Y S 1991 Phys. Lett. A 15722
[14] Cheng Y and Li Y S 1992 J. Phys. A: Math. Gen. 25419
[15] Toda M 1981 Theory of Nonlinear Lattices (Berlin: Springer)
[16] Ragnisco O 1992 Phys. Lett. A 167165
[17] Ragnisco O 1991 Proc. Conf. on Solitons and Chaos (Brussels, 1990) (Research Reports in Physics) (Berlin: Springer) p 227
[18] Bruschi M, Ragnisco O, Santini P M and Tu G Z 1991 Physica D 49273
[19] Cao C W and Geng X G 1990 J. Phys. A: Math. Gen. 234117
[20] Belokolos E D, Bobenko A I, Enol'skii V Z, Its A R and Matveev V B 1994 Algebro-Geometric Approach to Nonlinear Integrable Equations (Berlin: Springer)
[21] Griffiths P and Harris J 1978 Principles of Algebraic Geometry (New York: Wiley)
[22] Zhou R G 1997 J. Math. Phys. 382535
[23] Kodama Y and Ye J 1998 Physica D 12189
[24] Kodama Y and Ye J 1996 Physica D 91321
[25] Kodama Y 1990 Phys. Lett. A 147477

